关于单线性插值和双线性插值的概念参考【1】,双线性插值就是在x、y轴进行了三次单线性插值。
对于float类型的像素,使用双线性插值方法求灰度。如下图所示,求P点灰度时找到附近的四个整数坐标的像素点A(x,y) B(x,y+1) C(x+1,y) D(x+1,y+1)

设P(x+xx,y+yy),P1(x+xx,y), P2(x+xx,y+1) (这里的xx和yy指的是x和y的小数部分)
①先求P1和P2位置的灰度值:

②求P的灰度值:

代码部分:
inline float GetPixelValue(const cv::Mat &img, float x, float y) {
//img.step是每行的有效像素个数
uchar *data = &img.data[int(y) * img.step + int(x)];
float xx = x - floor(x); // floor函数为向下取整,因此xx为x的小数部分
float yy = y - floor(y);
// data[0]指向点A,data[1]指向C,data[img.step]指向B
return float(
(1 - xx) * (1 - yy) * data[0] +
xx * (1 - yy) * data[1] +
(1 - xx) * yy * data[img.step] +
xx * yy * data[img.step + 1]
);
}
int函数和floor函数区别:int函数返回的值是整型,floor函数返回值是浮点型
本文介绍了双线性插值的概念,它是基于单线性插值在二维空间中的扩展。在处理浮点坐标像素时,通过找到临近的四个整数坐标像素点A,B,C,D,利用线性插值计算给定点P的灰度值。提供的代码示例展示了如何在OpenCV中实现这一过程,其中涉及了数据指针操作和小数部分提取。
9242

被折叠的 条评论
为什么被折叠?



