MapReduce 并行度机制(一)MapTask 并行度机制

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_41455420/article/details/79289391

MapTask 并行度机制

MapTask 的并行度指的是 map 阶段有多少个并行的 task 共同处理任务。map阶段的任务处理并行度,势必影响到整个 job 的处理速度。那么,MapTask 并行实例是否越多越好呢?其并行度又是如何决定呢?

一个 MapReducejob 的 p map 阶段并行度由客户端在提交 b job 时决定,即客户端提交 job 之前会对待处理数据进行 逻辑切片。切片完成会形成 切片规划 文件( job.split) ),每个逻辑切片最终对应启动一个 maptask。逻辑切片机制由 FileInputFormat 实现类的 getSplits()方法完成。

FileInputFormat 切片机制

FileInputFormat 中默认的切片机制:
A. 简单地按照文件的内容长度进行切片
B. 切片大小,默认等于 block 大小
C. 切片时不考虑数据集整体,而是逐个针对每一个文件单独切片

比如待处理数据有两个文件:
file1.txt 320M
file2.txt 10M
经过 FileInputFormat 的切片机制运算后,形成的切片信息如下:
file1.txt.split1—0M~128M
file1.txt.split2—128M~256M
file1.txt.split3—256M~320M
file2.txt.split1—0M~10M

FileInputFormat 中切片的大小的参数配置
在 FileInputFormat 中,计算切片大小的逻辑:
Math.max(minSize, Math.min(maxSize, blockSize));
切片主要由这几个值来运算决定:
minsize:默认值:1
配置参数: mapreduce.input.fileinputformat.split.minsize
maxsize:默认值:Long.MAXValue
配置参数:mapreduce.input.fileinputformat.split.maxsize
blocksize
因此, 默认情况下, split size =block size,在 hadoop 2.x 中为128M。
maxsize(切片最大值):参数如果调得比 blocksize 小,则会让切片变小,而且就等于配置的这个参数的。
minsize (切片最小值):参数调的比 blockSize 大,则可以让切片变得比blocksize 还大。
但是,不论怎么调参数,都不能让多个小文件“划入”一个 split 。
还有个细节就是:
当 bytesRemaining/splitSize > 1.1 不满足的话,那么最后所有剩余的会作为一个切片。从而不会形成例如 129M 文件规划成两个切片的局面。

喜欢就点赞评论+关注吧

这里写图片描述

感谢阅读,希望能帮助到大家,谢谢大家的支持!

展开阅读全文

没有更多推荐了,返回首页