神经网络第2次迭代loss不变的问题 新手在搭建完成自己神经网络后,在训练过程中可能遇到这样的问题:第一次epoch训练结束损失降低,在之后的每个epoch训练结束后模型的loss不发生变化。除了网上的常见的原因外,对于新手还有一个极其难以察觉的代码bug,如下所示opt_adam = optim.AdamW(model.parameters(), lr=0.1)lr_sch = optim.lr_scheduler.StepLR(opt_adam, step_size=5, gamma=0.1)for epoch in range(
torch梯度更新 一、梯度产生和更新import torchimport torch.optim as optimfrom torch.autograd import Variablex = torch.FloatTensor([2,3,4,5])x = Variable(x,requires_grad=True)y = x**2opt = optim.SGD([x],lr=0.1,weight_decay=0)y.backward(torch.ones(4))opt.step()y=x2y=x^2y=
Graph Convolutional Matrix Completion Graph Convolutional Matrix Completion该篇文章提出了基于图卷积的矩阵补全方法。图卷积编码器文章提出了一种能为每种边的类型分配单独的处理过程(简而言之,不同类型的边,使用不同的权重矩阵)信息聚合信息:对于中心节点iii,他的邻居节点jjj传递过来的信息如下,μj→i,r=2ci,jWrxj\mu_{j\rightarrow i,r}=\frac{2}{c_{i,j}}W_rx_jμj→i,r=ci,j2Wrxj其中ci,jc_{i,j}ci,
基于评论文本的推荐系统 基于评论的推荐系统摘要当前人们在线上购物的行为越来越多,与此同时,当用户在完成购物后,部分用户会根据自己的体验给出相应的评价以及评分,其中评分数据往往是非常稀疏的,而评价文本中往往蕴含着对应用户的大量偏好信息,如何挖掘其中的信息,进而弥补评分数据的稀疏性是研究人员的研究重点。通常利用评论文本的方式可分为两种文档级别:将user或item的相关评论文本拼接成文档进行表示学习,简单的处理就是,把user的评论文本拼接在一起作为一大段话,将这句话通过CNN得到user特征向量,item的处理同上。评论
squeeze和unsqueeze squeezesqueeze(x, axis=None, name=None)如果指定了axis,那么会删除axis中指定尺寸为1的维度(如果axis指定的尺寸不为1,则不会删除该维度)a.shape=[1,2,3],假设要删除第0个维度,那么可以直接squeeze(0),注意此时第0维度为1,符合删除的要求。当不符合维度不符合要求的时候,则保持不变。unsqueezeunsqueeze(x, axis, name=None)插入一个尺度为1的维度,其中axis表示新插入的维度在新sh
Rasa NLU Chi 中的组件之间的数据流动 Rasa NLU Chi 中的组件之间的数据流动如果需要查看如何在ubuntu中使用pycharm调试rasa nlu chi可查看另一篇博文https://blog.csdn.net/qq_41475825/article/details/119646149?spm=1001.2014.3001.5501一、piplinelanguage: "zh"pipeline:- name: "nlp_mitie" model: "../data/total_word_feature_extract
基于Pycharm的Rasa NLU chi项目调试及观察 基于Pycharm的Rasa NLU chi项目调试及观察环境:python 3.7,rasa_NLU_chi、linux版pycharm。1、安装rasa_nlu_chiconda create -n rasanluchi python=3.6conda activate rasanluchigit clone https://github.com/crownpku/rasa_nlu_chi.gitcd rasa_nlu_chipython setup.py install#安装需要的第三
rasa 分支策略 rasa 分支实现示例,表单填完后是否重新填写表单1、设定slot,其名为form_ok,设定填写该slot的表单form_is_ok_or_notform_ok: type: rasa.shared.core.slots.TextSlot initial_value: null auto_fill: true influence_conversation: false form_is_ok_or_not: required_slots: form_ok: -
conda create 环境失败 conda create 环境失败解决办法:关闭VPN代理!Collecting package metadata (current_repodata.json): failed# >>>>>>>>>>>>>>>>>>>>>> ERROR REPORT <<<<<<<<<<<<<<<
Mongo Docker下载安装 Mongo Docker1、下载官方镜像的最新版本docker pull mongo:latest2、创建Mongo容器> docker run -itd --name mongo -p 27017:27017 mongo --authdocker run:执行命令的exe文件及参数-i 保留交互界面-t 分配一个虚拟终端,-it经常一起出现-d 在后台运行容器–name 容器名称-p 端口转发,hostport:containerport(如1:2)将主机端口1映射到容器的
Joplin+坚果云同步 坚果云WebDAV URL:https://dav.jianguoyun.com/dav/+同步文件夹名称WebDAV 用户名:您的坚果云账号邮箱WebDAV 密码:在坚果云中生成的第三方应用密码。进入坚果云官网,左上角进入账户信息,安全选项,第三方应用管理下生成第三方应用密码。Joplin上方工具栏Tools,进入options,选择Synchronisation,开始配置。Synchronisation target 选择WebDAVWebDAV URL填入https://dav.j
PyTorch中CRF层 本篇文章假设你已经看过CRF(条件随机场)与Viterbi(维特比)算法原理详解(侵权则删),但是对Pytorch的Tutorials中BiLSTM-CRF代码还有些许的疑惑。假设有句子 “ 我爱黄焖鸡 ”句子经过分词,得到 “我”、“爱”、“饭” 这三个词(意思是句子的长度为3)句子对应标签“N,V,N”标签集合={‘N(名词)’ , ‘V’(动词)}train代码loss的计算方法为neg_log_likelihood(),我们跳转到该方法。2、neg_log_likeli
简单探究神经网络中权重、偏置维度的关系 利用PyTorch的tensor和autograd实现一个简单的神经网络利用PyTorch的tensor和autograd实现一个简单的神经网络新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入利用PyTorch的tenso
回调函数和普通调用函数 为什么用回调函数?网上大部分都是讲回调函数怎么用,然后给出几个简单例子,但这些例子简单的只能让我们这些初学者认为“哦!原来函数还可以用指针调用!”,但是我一见到那些例子,第一反应就觉得这些同样可以通过调用普通函数来实现,费那么大劲干什么?究其原因,他们给的没有给出一个重点。我们假设下面场景你是一位酒店前台,每天早上要有客人的叫醒服务。你有三种叫醒服务,A打电话,B敲门,C不叫无论你才有...
keil仿真下,定时器不进行16位重载的原因 keil下对于定时器仿真的问题情况:设置16位重载定时器之后,观察不到定时器的重载行为。原因之一:keil在深层不支持对STC的仿真:编写16为重载定时器的测试程序:理论上:1、初始化定时器0,设置为16位重载定时器模式2、接着将TH0和TL0分别初始化为0xf0, 0x00(此时会将0xf0和0x00自动存入了RL_TH0和RL_TL0),启动定时器3、接下来等到定时器溢出的时...