向量组和线性相关

向量和向量组
以下讨论同样适用于行矩阵:
列矩阵素被看作空间内的一个向量,N阶列矩阵被称为N维向量
M个N维列矩阵按顺序组成的新矩阵被称为向量组


线性表示和线性相关
当向量方程AX=b有解时,称向量b可以用向量组A线性表示,称Σxiai为向量组A的一个线性组合
当向量组B的所有向量bi都能用A线性表示时,称向量组B能被向量组A线性表示。这个关系不一定可逆。

当向量方程组AX=0有非0解时,称向量组A线性相关(有重复多余的方程)
否则称线性无关

向量组的秩
极大无关组:原组的子组中最广的无关组
极大无关组中向量的列数即为向量组的秩
极大无关组的求法:矩阵变换得到的行最简矩阵的非零行首元所在列向量组成的向量组

向量组和秩的性质

  1. b能被A线性表示 是 R(A)=R(A|b) 的充要条件
  2. B能被A线性表示 是 R(A)=R(A|B) 的充要条件
  3. B能被A线性表示 则 R(B)<=R(A)推论: 相互表示的向量组等价 = R(A)=R(B)=R(A|B)
  4. 线性相关的向量组的秩小于列数,线性无关的向量组的秩和列数相等
  5. 相关向量组的增广组也相关,无关组的减广组也无关
  6. 矩阵的秩=列向量组的秩=行向量组的秩 推论:一个能表示其原组的无关子组即为原组的最大无关组
  • 1
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值