中国剩余定理

孙子定理是中国古代求解一次同余式组的方法。是数论中一个重要定理。一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:

有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。

给出n个同余式, 求满足所有式子的一个最小解,一般形式如下:

\left\{\begin{matrix} x=a_{1}(mod \, \, m_{1}) \\ x=a_{2} (mod \, \, m_{2}) \\ .......................... \\ x=a_{n} (mod \, \, m_{n}) \end{matrix}\right.

求解x的最小值,其中a_{1},a_{2} ,.....a_{n}, 是互质的, 如果不互质,应该用其他方法求解.

中国剩余定理给出求解公式:x=\sum (M_{i}*c_{i}*a_{i})

M=m_{1}*m_{2}*...*m_{n},

\left\{\begin{matrix} M_{1}=M/m_{1}\\ M_{2}=M/m_{2} \\ ......................... \\ M_{n}=M/m_{n} \end{matrix}\right.

对于c_{i}则构造同余式

\left\{\begin{matrix} M_{1}*c_{1} = 1 (mod \, \, a_{1}) \\ M_{2}*c_{2} = 1 (mod \, \, a_{2}) \\ ................................. \\ M_{n}*c_{n} = 1 (mod \, \, a_{n}) \end{matrix}\right.

其中M_{i}, a_{i} 都是已知的, 可以用exgcd求出c_{i}, 这是最主要的一步

求解方法 :https://blog.csdn.net/qq_41505957/article/details/101515687

M_{i}, c_{i}, a_{i} 都已知, 可以求出x.

 

举个例子:

\left\{\begin{matrix} x = 13(mod\, \, 17) \\ x = 4(mod \, \, 13) \\ x = 5(mod\, \, 7) \end{matrix}\right.

那么

\left\{\begin{matrix} a_{1}=13 \\ a_{2}=4 \\ a_{3}=5 \end{matrix}\right.          \left\{\begin{matrix} m_{1} =17\\ m_{1} =13 \\ m_{1} =7 \end{matrix}\right.

M = 17*13*7=1547 ,求出M_{i}

\left\{\begin{matrix} M_{1}=91 \\ M_{2}=119 \\ M_{3}=221 \end{matrix}\right.

构造同余方程

\left\{\begin{matrix} 91*c_{1} =1(mod\, \,17 )\\ 119*c_{2} =1(mod\, \,13 ) \\ 221*c_{3} =1(mod\, \,7 ) \end{matrix}\right.

用扩展欧几里得解得

\left\{\begin{matrix} c_{1}=3 \\ c_{2}=-6 \\ c_{3}=2 \end{matrix}\right.

x=13*91*3 + 4*119*(-6) + 5*221*2 = 2903

 

#include #include using namespace std; typedef int LL; typedef pair PLL; LL inv(LL t, LL p) {//求t关于p的逆元 if (t >= p) t = t%p; return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p; } LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } PLL linear(LL A[], LL B[], LL M[], int n) {//求解A[i]x = B[i] (mod M[i]),总共n个线性方程组 LL x = 0, m = 1; for (int i = 0; i < n; i++) { LL a = A[i] * m, b = B[i] - A[i] * x, d =gcd(M[i], a); if (b % d != 0) return PLL(0, -1);//答案不存在,返回-1 LL t = b / d * inv(a / d, M[i] / d) % (M[i] / d); x = x + m*t; m *= M[i] / d; } x = (x % m + m) % m; return PLL(x, m);//返回的x就是答案,m是最后的lcm值 } int main() { int n; scanf_s("%d", &n); LL a[2017], b[2017], m[2017]; for (int i = 0; i<n; i++) { scanf_s("%d%d%d", &a[i], &b[i], &m[i]); } PLL pa = linear(a, b, m, n); printf("%lld\n", pa.first); } 设计思路: 有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?” 解这题,先构造一个答案 5*7*inv(5*7, 3) % 3 = 1 3*7*inv(3*7, 5) % 5 = 1 3*5*inv(3*5, 7) % 7 = 1 然后两边同乘你需要的数 2 * 5*7*inv(5*7, 3) % 3 = 2 3 * 3*7*inv(3*7, 5) % 5 = 3 2 * 3*5*inv(3*5, 7) % 7 = 2 令 a = 2 * 5*7*inv(5*7, 3) b = 3 * 3*7*inv(3*7, 5) c = 2 * 3*5*inv(3*5, 7) 那么 a % 3 = 2 b % 5 = 3 c % 7 = 2 其实答案就是a+b+c 因为 a%5 = a%7 = 0 因为a是5的倍数,也是7的倍数 b%3 = b%7 = 0 因为b是3的倍数,也是7的倍数 c%3 = c%5 = 0 因为c是3的倍数,也是5的倍数 所以 (a + b + c) % 3 = (a % 3) + (b % 3) + (c % 3) = 2 + 0 + 0 = 2 (a + b + c) % 5 = (a % 5) + (b % 5) + (c % 5) = 0 + 3 + 0 = 3 (a + b + c) % 7 = (a % 7) + (b % 7) + (c % 7) = 0 + 0 + 2 = 2 答案a+b+c完全满足题意 但是答案,不只一个,有无穷个,每相隔105就是一个答案(105 = 3 * 5 * 7) a=2*5*7*2=140 b=3*3*7*1=63 c=2*3*5*1=30 140+63+30=233 2335 = 23 如果题目问你最小的那个答案,那就是23了。 当 1*x=2(%3) 1*x=3(%5) 1*x=2(%7) 输入: 3 1 2 3 1 3 5 1 2 7 输出: 23
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张宜强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值