bzoj2152: 聪聪可可

2152: 聪聪可可

Time Limit: 3 Sec  Memory Limit: 259 MB
Submit: 4804  Solved: 2516
[Submit][Status][Discuss]

Description

聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。

Input

输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。

Output

以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”)。

Sample Input

5
1 2 1
1 3 2
1 4 1
2 5 3

Sample Output

13/25
【样例说明】
13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。

【数据规模】
对于100%的数据,n<=20000。

HINT

Source


题解:

自己肝了半天dp方程还是没推好,无奈去看大佬题解。

因为取模数很小,可以考虑树形DP,记Cot[X][3]为点X的子树中,距离根节点距离%3分别为0,1,2的点数,那么就可以很简单的统计出经过X点的路径数,累加便是答案。


代码:

  1. #include<stdio.h>  
  2. #include<string.h>  
  3. #include<algorithm>  
  4. #include<math.h>  
  5. #include<iostream>  
  6. #include<stdlib.h>  
  7. #include<set>  
  8. #include<map>  
  9. #include<queue>  
  10. #include<vector>  
  11. #include<bitset>  
  12. #pragma comment(linker, "/STACK:1024000000,1024000000")  
  13. template <class T>  
  14. bool scanff(T &ret){ //Faster Input  
  15.     char c; int sgn; T bit=0.1;  
  16.     if(c=getchar(),c==EOF) return 0;  
  17.     while(c!='-'&&c!='.'&&(c<'0'||c>'9')) c=getchar();  
  18.     sgn=(c=='-')?-1:1;  
  19.     ret=(c=='-')?0:(c-'0');  
  20.     while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');  
  21.     if(c==' '||c=='\n'){ ret*=sgn; return 1; }  
  22.     while(c=getchar(),c>='0'&&c<='9') ret+=(c-'0')*bit,bit/=10;  
  23.     ret*=sgn;  
  24.     return 1;  
  25. }  
  26. #define inf 1073741823  
  27. #define llinf 4611686018427387903LL  
  28. #define PI acos(-1.0)  
  29. #define lth (th<<1)  
  30. #define rth (th<<1|1)  
  31. #define rep(i,a,b) for(int i=int(a);i<=int(b);i++)  
  32. #define drep(i,a,b) for(int i=int(a);i>=int(b);i--)  
  33. #define gson(i,root) for(int i=ptx[root];~i;i=ed[i].next)  
  34. #define tdata int testnum;scanff(testnum);for(int cas=1;cas<=testnum;cas++)  
  35. #define mem(x,val) memset(x,val,sizeof(x))  
  36. #define mkp(a,b) make_pair(a,b)  
  37. #define findx(x) lower_bound(b+1,b+1+bn,x)-b  
  38. #define pb(x) push_back(x)  
  39. using namespace std;  
  40. typedef long long ll;  
  41. typedef pair<int,int> pii;  
  42.   
  43. #define NN 100100  
  44. int ptx[NN],lnum;  
  45. struct edge{  
  46.     int v,next,w;  
  47.     edge(){}  
  48.     edge(int v,int next,int w){  
  49.         this->v=v;  
  50.         this->next=next;  
  51.         this->w=w;  
  52.     }  
  53. }ed[NN*2];  
  54. void addline(int x,int y,int w){  
  55.     ed[lnum]=edge(y,ptx[x],w);  
  56.     ptx[x]=lnum++;  
  57. }  
  58. int n,ans;  
  59. int dis[NN];  
  60. int c[NN][3];  
  61. void dfs(int x,int fa,int d){  
  62.     c[x][d%3]++;  
  63.     ans++;  
  64.     gson(i,x){  
  65.         int y=ed[i].v;  
  66.         if(y==fa)continue;  
  67.         dfs(y,x,d+ed[i].w);  
  68.         if(d%3==0){  
  69.             ans+=c[x][0]*c[y][0]*2;  
  70.             ans+=c[x][1]*c[y][2]*2;  
  71.             ans+=c[x][2]*c[y][1]*2;  
  72.         }  
  73.         if(d%3==1){  
  74.             ans+=c[x][2]*c[y][0]*2;  
  75.             ans+=c[x][0]*c[y][2]*2;  
  76.             ans+=c[x][1]*c[y][1]*2;  
  77.         }  
  78.         if(d%3==2){  
  79.             ans+=c[x][1]*c[y][0]*2;  
  80.             ans+=c[x][0]*c[y][1]*2;  
  81.             ans+=c[x][2]*c[y][2]*2;  
  82.   
  83.         }  
  84.         c[x][0]+=c[y][0];  
  85.         c[x][1]+=c[y][1];  
  86.         c[x][2]+=c[y][2];  
  87.   
  88.     }  
  89.   
  90. }  
  91. int main(){  
  92.     mem(ptx,-1);  
  93.     scanff(n);  
  94.     rep(i,2,n){  
  95.         int x,y,z;  
  96.         scanff(x);  
  97.         scanff(y);  
  98.         scanff(z);  
  99.         addline(x,y,z);  
  100.         addline(y,x,z);  
  101.     }  
  102.     dfs(1,0,0);  
  103.     int g=__gcd(ans,n*n);  
  104.     printf("%d/%d\n",ans/g,n*n/g);  
  105.     return 0;  
  106. }  

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页