有梦想的雨
码龄7年
关注
提问 私信
  • 博客:243,482
    视频:7
    243,489
    总访问量
  • 71
    原创
  • 464,848
    排名
  • 153
    粉丝
  • 2
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2017-12-25
博客简介:

qq_41536160的博客

查看详细资料
个人成就
  • 获得366次点赞
  • 内容获得23次评论
  • 获得2,703次收藏
  • 代码片获得506次分享
创作历程
  • 2篇
    2023年
  • 38篇
    2022年
  • 33篇
    2021年
成就勋章
TA的专栏
  • CUDA手册
    2篇
  • 机器学习
    21篇
  • C语言
    16篇
  • 深度学习
    2篇
  • C++
    1篇
  • PRML
    3篇
  • numpy使用记录
    1篇
  • 模式识别
    11篇
  • 计算智能
    11篇
  • 数据结构
    11篇
兴趣领域 设置
  • 人工智能
    nlp数据分析
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

CUDA编程模型

本章介绍了CUDA编程模型背后的主要概念,概述了它们在C++中的公开方式。在编程接口中对CUDA C++进行了详尽的描述。本章和下一章中使用的矢量加法示例的完整代码可以在矢量加法CUDA示例中找到。
翻译
发布博客 2023.10.14 ·
246 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CUDA介绍

这种可扩展的编程模型允许GPU架构通过简单地扩展多处理器和内存分区的数量来跨越广泛的市场范围:从高性能爱好者GeForce GPU和专业的Quadro和Tesla计算产品到各种廉价的主流GeForce GPU(请参阅CUDA启用的GPU以获取所有CUDA启用GPU的列表)。虽然CPU被设计成擅长以尽可能快的速度执行一系列被称为线程的操作,并且可以并行执行几十个这样的线程,但GPU被设计成善于并行执行数千个这样的操作(将较慢的单线程性能均衡以实现更大的吞吐量)。它的核心是三个关键的抽象——
翻译
发布博客 2023.10.13 ·
260 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python读取CSV文件

1.1 参数对参数 ,参见:文件读写操作。1.2.2 读操作1.2.3 写操作2. 利用pandas读取2.1 函数接口返回值为 dataframe
原创
发布博客 2022.06.30 ·
5403 阅读 ·
3 点赞 ·
0 评论 ·
49 收藏

SVM——支持向量机(二)

硬间隔SVM之前的描述都是基于数据是线性可分的情况。但是实际上并不能保证总是线性可分的;并且全部线性可分的分隔面并不一定是最好的,如下图所示,尽管实线实现了全部分隔,但其间隔很小,有轻微扰动时将会发生误判。相比之下,虚线的分隔面要更好一些。为使得模型能够适应非线性数据集,同时对离群点不那么敏感,将优化模型进行 l1l_1l1​ 正则化如下:但是,当变量的特征维数迅速扩大时,其特征的组合数也会急速扩大,如令 ϕ(x)\phi(x)ϕ(x) 是三次幂之下的特征组合时,当 xxx 只有三个维度,那么 ϕ(x)
原创
发布博客 2022.06.29 ·
506 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SVM——支持向量机(一)

SVM 是是一种二分类模型,基本模型是的定义在特征空间上的间隔最大的线性分类器,SVM的学习策略就是间隔最大化。以逻辑回归为例,hθ(x)=g(θTx)=11+e−θTx\displaystyle h_\theta(x)=g(\theta^Tx)=\frac{1}{1+e^{-\theta^Tx}}hθ​(x)=g(θTx)=1+e−θTx1​,特征组合经过 sigmoid 函数被映射到 [0,1][0,1][0,1] 之间。对于二分类问题,即可被视为概率,{p(y=1∣x;θ)=hθ(x),p(y=0∣x
原创
发布博客 2022.06.29 ·
851 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

C语言——程序解构说明

1. 程序结构说明程序结构#include<stdio.h> //引入头文件/*说明:2. 这是一个 main 函数,是程序的执行入口,程序从 main 函数开始执行3. void 表示 main 函数没有返回值4. main(){ //函数体,即函数语句 语句 1; 语句 2;}*/void main(){ int a = 10; //定义一个整型变量 printf("你好"); //printf 是一个函数,在头文件 <stdio.h>
原创
发布博客 2022.06.29 ·
812 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

模型评估与选择

具体的训练集、验证集、测试集不做过多描述。偏差:预计值的期望与真实值之间的差异。排除噪声的影响,偏差更多的是针对某个模型输出的样本误差,是模型无法准确表达数据关系导致的,比如模型过于简单,非线性的数据关系采用线性模型建模,偏差较大的模型是错的模型。方差:预测值的离散程度,也就是离其期望值的距离。模型方差不是针对某一个模型输出样本进行判定,而是指多个(次)模型输出的结果之间的离散差异。这里说的多个模型或者多次模型,即不同模型或同一模型不同时间的输出结果方差较大。方差是由训练集的数据不够导致,一方面 数据样本数
原创
发布博客 2022.06.27 ·
634 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

自然语言处理综述

自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。NLP是一门融语言学、计算机科学、数学于一体的科学,涉及自然语言(即人们日常使用的语言),所以它与语言学的研究有着密切的联系,但又有重要的区别。但NLP并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统,因此又和计算机科学密不可分。早期,自然语言处理中存在着两种不同的研究方法,分别是基于规则的符号主义和基于概率的随机统计经验主义两种不同的
原创
发布博客 2022.06.26 ·
5140 阅读 ·
6 点赞 ·
1 评论 ·
64 收藏

时间序列分析

时间序列是一组按时间顺序排列的观测值 y1,y2,⋯ ,yty_1,y_2,\cdots, y_ty1​,y2​,⋯,yt​。预测 是在给定所有当前信息(包括历史数据和可能影响这些事件的任何未来事件的知识)的情况下,对未来事件和条件的预测。预测可以为商业和经济决策、计划和政府政策提供信息。预测的目标是 在给定观测序列直到现在的时间 ttt,预测时间索引在未来点 t+ht + ht+h 的响应变量。也就是说,给定 y1,y2,⋯ ,yty_1,y_2,\cdots, y_ty1​,y2​,⋯,yt​,预测
原创
发布博客 2022.06.21 ·
1682 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

C++头文件容器库——vector

vector的使用,首先添加头文件 vector 是封装动态数组的顺序容器。元素相继存储,不仅可通过迭代器,还能用指向元素的常规指针访问元素。vector 的存储是自动管理的,按需扩张收缩; vector 通常占用多于静态数组的空间,因为要分配更多内存以管理将来的增长; vector 所用的方式不在每次插入元素时,而只在额外内存耗尽时重分配。函数接口(c++20):函数作用:将 other 中的 vector 赋值给 “=” 之前的 vector;不是地址引用,是赋值重建;常规使用示例:1.2 assi
原创
发布博客 2022.06.20 ·
5988 阅读 ·
2 点赞 ·
0 评论 ·
20 收藏

分类(classification)

在分类中,使用一个 C×CC\times CC×C 的损失矩阵 LLL来表达损失函数,其中,CCC 指类别数。损失矩阵中的每个元素 Lkl=L(k,l)L_{kl}=L(k,l)Lkl​=L(k,l) 指将实际类别属于 kkk,但是将其分类到 lll 的损失。常用的损失函数为 0−10-10−1 损失函,其中 Lkl={1,k≠l0,k=l\displaystyle L_{kl}=\left\{ \begin{aligned} 1, && k
eq l \\ 0, && k=l\end{align
原创
发布博客 2022.06.05 ·
426 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

K近邻法(KNN)

KNN(K近邻方法)
原创
发布博客 2022.06.02 ·
2162 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

线性回归(Linear Regression)

线性回归
原创
发布博客 2022.06.02 ·
526 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

商业分析过程

使用业务理解工具有助于对业务的理解: 如双钻石模型(The Double Diamond process),五问法(the Five Why technique)。实际情况下,商业分析是一个学习和发现的递归过程。整个过程可能需要定期重复和更新,因为业务世界总是在不断变化。在商业分析中,预测性建模对商业决策是否成功有着至关重要的作用,原因如下:(1)大数据时代。互联网和数据采集设备(如移动电话、照相机、传感器、读卡器等)的出现,加上存储成本的大幅降低,带来了前所未有的数据可用性,数据集的规模继续大幅增长。
原创
发布博客 2022.06.02 ·
742 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

神经网络训练算法

1. 传统优化问题大多数深度学习算法都涉及某种形式的优化。优化指的是改变 xxx 以最小化或最大化某个函数 f(x)f(x)f(x) 的任务。通常以最小化 f(x)f(x)f(x) 指代大多数最优化问题。最大化可经由最小化算法最小化 −f(x)- f(x)−f(x) 来实现。通常,把要最小化或最大化的函数 f(x)f(x)f(x) 称为 目标函数(objective function)、代价函数(cost function)、损失函数(loss function)或误差函数(error function
原创
发布博客 2022.05.31 ·
2613 阅读 ·
4 点赞 ·
1 评论 ·
33 收藏

循环神经网络(Recurrent Neural Network, RNN)

基本概念一般的神经网络(BP以及CNN)只对预先确定的大小起作用:它们接受固定大小的输入并产生固定大小的输出。它们的输出都是只考虑前一个输入的影响而不考虑其它时刻输入的影响, 比如简单的猫,狗,手写数字等单个物体的识别具有较好的效果。但是, 对于一些与时间先后有关的, 比如视频的下一时刻的预测,文档前后文内容的预测等, 这些算法的表现就不尽如人意了。循环神经网络 (Recurrent Neural Network, RNN) 一般是指时间递归神经网络而非结构递归神经网络 (Recursive Neura
原创
发布博客 2022.05.29 ·
5654 阅读 ·
5 点赞 ·
0 评论 ·
53 收藏

1653813294375

发布视频 2022.05.29

卷积神经网络(convolutional neural network, CNN)

基本定义卷积神经网络(convolutional neural network, CNN),是一类包含卷积计算且具有深度结构的前馈神经网络。卷积神经网络是受生物学上感受野(Receptive Field)的机制而提出的。卷积神经网络专门用来处理具有类似网格结构的数据的神经网络。例如,时间序列数据(可以认为是在时间轴上有规律地采样形成的一维网格) 和图像数据(可以看作是二维的像素网格)。1.卷积层(convolutional layer)作用:特征提取卷积层内部包含多个卷积核,组成卷积核的每个元素都
原创
发布博客 2022.05.28 ·
67036 阅读 ·
147 点赞 ·
12 评论 ·
1271 收藏

C 语言基础

一、基本概括二、变量三、运算符四、控制语句五、数据输入输出六、数组七、函数八、预处理命令九、指针十、结构体与共用体十一、动态内存分配十二、枚举类型十三、类型定义符typedef十四、位运算十五、文件...
原创
发布博客 2022.03.19 ·
200 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

C语言基础——文件

十五、文件15.1 C 文件概述所谓“文件”是指一组相关数据的有序集合。这个数据集有一个名称,叫做文件名。文件通常是驻留在外部介质(如磁盘等)上的,在使用时才调入内存中来。从不同的角度可对文件作不同的分类。从用户的角度看,文件可分为普通文件和设备文件两种。普通文件 是指驻留在磁盘或其它外部介质上的一个有序数据集,可以是源文件、目标文件、可执行程序;也可以是一组待输入处理的原始数据,或者是一组输出的结果。对于源文件、目标文件、可执行程序可以称作程序文件,对输入输出数据可称作数据文件。设备文件 是指与主机
原创
发布博客 2022.03.19 ·
13650 阅读 ·
102 点赞 ·
2 评论 ·
511 收藏
加载更多