时间复杂度的分析计算过程完整详解

本文深入探讨了算法执行时间与元素数量的关系,通过实例解析了数组遍历、冒泡排序和二分查找的时间复杂度,揭示了O(n)、O(n^2)和O(logn)的增长规律,强调时间复杂度的相对变化趋势而非绝对执行时间。
摘要由CSDN通过智能技术生成

时间复杂度

**在一段逻辑/算法中,将某一段可能回被重复执行的逻辑的执行时间看作是单位1,考虑单位1的执行次数和元素个数之间的变化关系**

举例:数组遍历

for(int i = 0; i < n; i++){
	... // 不管这段逻辑执行一次的时间是多少,都将这个时间看作是单位1
}
有1个元素,单位1执行1次
有10个元素,单位1执行10次
有n个元素,单位1执行n次
单位1的执行次数和元素个数之间的变化关系:f(n) = n -> 时间复杂度是O(n)

**如果在时间复杂度的推导计算过程中,出现了多项式和系数,除非其他项和系数大到足够影响变化趋势,否则不考虑**

案例:冒泡排序

for(){
	for(){
		if(){} // 单位1
	}
}
数组中有n个元素,那么单位1要执行多少次?
第1轮,执行n-1次
第2轮,执行n-2次
...
第n-1轮,执行1次
单位1的执行次数和元素个数之间的变化关系:
	f(n) = n-1 + n-2 + ... + 1 
	     = (n-1 + 1)(n-1)/2
		 = n*(n-1)*1/2
		 -> n*(n-1) -> n^2 -> 时间复杂度是O(n^2)

**如果时间复杂度中出现了对数,那么对数的底数默认为2**

案例:二分查找

while(xxx){
	... // 单位1
}
有n个元素
第1次查找,剩余n*1/2
第2次查找,剩余n*1/2*1/2=n/(2^2)
第3次查找,剩余n*1/2*1/2*1/2=n/(2^3)
...
经过x次查找,剩余1=n/(2^x)
1=n/(2^x) -> 2^x=n => f(n)=logn -> 时间复杂度是O(logn)

**注意,时间复杂度一致,不代表执行时间是一样的,只能说明两个算法的变化趋势是一样的**
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值