Windowing TVF
在Flink1.13版本之后出现的替代之前的Group window的产物,官网描述其 is more powerful and effective
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lzTIsZpj-1667302326630)(assets/1667299039419.png)]
//TVF 中的tumble滚动窗口
//tumble(table sensor,descriptor(et),interval '5' second ):作为一张表存在
//特别注意!!!!
//如果在sql中使用了tumble窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段
sql实现TVF的tumble窗口实现
package net.cyan.FlinkSql.TVF;
import net.cyan.POJO.WaterSensor;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import java.time.Duration;
import static org.apache.flink.table.api.Expressions.$;
public class Demo1_Window_TableAPI_Tumble {
public static void main(String[] args) {
//创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//创建表的运行环境
StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env);
env.setParallelism(1);
DataStream<WaterSensor> waterSensorStream =
env.fromElements(
new WaterSensor("sensor_1", 1000L, 10),
new WaterSensor("sensor_1", 2000L, 20),
new WaterSensor("sensor_2", 3000L, 30),
new WaterSensor("sensor_1", 4000L, 40),
new WaterSensor("sensor_1", 5000L, 50

本文介绍了Flink1.13版本后引入的Windowing TVF,作为Group Window的替代,它更加强大且有效。通过SQL展示了如何实现Tumble、Slide和Cumulate窗口,并给出了一个具体的累计窗口应用案例,即每天每小时统计一次当天的浏览量(PV)。对于流处理,可以设置滚动窗口或自定义触发器来实现,而SQL中则直接使用Cumulate窗口即可完成该任务。
最低0.47元/天 解锁文章
2937

被折叠的 条评论
为什么被折叠?



