FlinkSQL之Windowing TVF

本文介绍了Flink1.13版本后引入的Windowing TVF,作为Group Window的替代,它更加强大且有效。通过SQL展示了如何实现Tumble、Slide和Cumulate窗口,并给出了一个具体的累计窗口应用案例,即每天每小时统计一次当天的浏览量(PV)。对于流处理,可以设置滚动窗口或自定义触发器来实现,而SQL中则直接使用Cumulate窗口即可完成该任务。
摘要由CSDN通过智能技术生成

Windowing TVF

在Flink1.13版本之后出现的替代之前的Group window的产物,官网描述其 is more powerful and effective

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lzTIsZpj-1667302326630)(assets/1667299039419.png)]

//TVF 中的tumble滚动窗口
//tumble(table sensor,descriptor(et),interval '5' second ):作为一张表存在
//特别注意!!!!
//如果在sql中使用了tumble窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段

sql实现TVF的tumble窗口实现

package net.cyan.FlinkSql.TVF;

import net.cyan.POJO.WaterSensor;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

import java.time.Duration;

import static org.apache.flink.table.api.Expressions.$;

public class Demo1_Window_TableAPI_Tumble {
   
    public static void main(String[] args) {
   
        //创建执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //创建表的运行环境
        StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env);
        env.setParallelism(1);
        DataStream<WaterSensor> waterSensorStream =
                env.fromElements(
                        new WaterSensor("sensor_1", 1000L, 10),
                        new WaterSensor("sensor_1", 2000L, 20),
                        new WaterSensor("sensor_2", 3000L, 30),
                        new WaterSensor("sensor_1", 4000L, 40),
                        new WaterSensor("sensor_1", 5000L, 50
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值