初等数论--同余方程--二元一次不定方程的通解形式
博主是初学初等数论(整除+同余+原根),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:初等数论,方便检索。
- 不定方程:变量个数>方程个数
若二元一次不定方程 a x + b y = n ax+by=n ax+by=n有解, x 0 , y 0 x_0,y_0 x0,y0为它的一组整数解,则通解为 { x = x 0 + b ( a , b ) ⋅ t y = y 0 − a ( a , b ) ⋅ t t ∈ Z \left\{ \begin{aligned} x & = & x_0+\frac{b}{(a,b)}·t \\ y & = & y_0-\frac{a}{(a,b)}·t \end{aligned} t\in Z \right. ⎩⎪⎪⎨⎪⎪⎧xy==x0+(a,b)b⋅ty0−(a,b)a⋅t

博主分享了关于初等数论中的二元一次不定方程通解形式,探讨了当ax+by=n有解时,如何通过公式找到通解,并证明了该形式的正确性。内容涉及到不定方程、同余理论和解的表达方式,适合数学和信息安全领域的学习者参考。
最低0.47元/天 解锁文章
547

被折叠的 条评论
为什么被折叠?



