初等数论--同余方程--二元一次不定方程的通解形式

博主分享了关于初等数论中的二元一次不定方程通解形式,探讨了当ax+by=n有解时,如何通过公式找到通解,并证明了该形式的正确性。内容涉及到不定方程、同余理论和解的表达方式,适合数学和信息安全领域的学习者参考。
摘要由CSDN通过智能技术生成

初等数论--同余方程--二元一次不定方程的通解形式

博主是初学初等数论(整除+同余+原根),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:初等数论,方便检索。

  • 不定方程:变量个数>方程个数

若二元一次不定方程 a x + b y = n ax+by=n ax+by=n有解, x 0 , y 0 x_0,y_0 x0,y0为它的一组整数解,则通解为 { x = x 0 + b ( a , b ) ⋅ t y = y 0 − a ( a , b ) ⋅ t t ∈ Z \left\{ \begin{aligned} x & = & x_0+\frac{b}{(a,b)}·t \\ y & = & y_0-\frac{a}{(a,b)}·t \end{aligned} t\in Z \right. xy==x0+(a,b)bty0(a,b)at

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值