初等数论--二次剩余与二次同余方程--既约剩余系中二次剩余的个数
博主是初学初等数论(整除+同余+原根),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:初等数论,方便检索。
二次剩余:设 a a a为整数, p p p为奇素数, p ∤ a p\nmid a p∤a,如果同余方程 x 2 ≡ a ( m o d p ) x^2\equiv a(mod p) x2≡a(modp)有解,那么 a a a是模 p p p的二次剩余;否则 a a a是模 p p p的二次非剩余。
- 设 p p p为奇素数,在 p p p的既约剩余系(共 p − 1 p-1 p−1个数)中,恰好有 p − 1 2 \frac{p-1}{2}

博主探讨了初等数论中的二次剩余概念,特别是针对奇素数p的情况。在p的既约剩余系中,存在2p-1个二次剩余和同样数量的二次非剩余。通过证明不同平方数在模p下可能的同余关系,揭示了二次剩余的个数。这是一个关于整除、同余和密码学基础的理论分析。
最低0.47元/天 解锁文章
1060

被折叠的 条评论
为什么被折叠?



