通信系统的模型:
信源------编码------信道------解码------信宿
编码:信源编码,信道编码
编码的目的:使消息能够在信道中传输
信源编码的目的:使冗余度最小,传输率R最大,有huffuman、pcm、线性预测、算术编码等,这一块包括图像处理、数据压缩
信道编码的目的:使抗干扰能力更强,能够对编码进行纠错,有bch、循环码、R-S等,主要有差错控制编码
1。信源编码在某种程度上与信道编码是矛盾的,因为冗余度大的时候,抗干扰能力更强,如何使冗余度小,而且抗干扰能力更强,就是我们需要研究的东西
2.通信的基本问题:要在某一端几乎近似或者准确的再现从另一端选择出来的消息
3数字通信系统模型:
信息论的关键:信息的定义、量化
0.1编码一般采用重复编码,然后进行多数判决,101表示1,001表示0.
对于二进制对称信道(BSC):
0/1 存在一个p(原始误比特率),p在[0,0.5]的范围之内,使输出bit与输入bit不同
1.首先,定义信源速率是R,当R是1/3时,意味着信息传输速率是产生速率的三倍,就是说1s内产生1bit信息的同时,可以传送3bit的信息,这个时候可以在传输之前对它进行重复3次的编码。例如信源输出是10100,这时编码流为101001010010100,对于每个信源bit,接收者将接收到3个bit,当出现噪声干扰时,比如干扰了一个信源输出,变成10110,这时编码流也会改变。
2.对每个bit重复编码多次就能提高可靠度,R=1/(2n+1),n为正整数,即传输之前对信源重复编码2n+1次,并用多票判决准则进行译码,
3需要强调的是,对于p<0.5的BSC,当n趋近无穷,误码率趋近于0.
4长重复序列比短重复序列更有效
结论:当R很小的时候,即使有很多噪声,也能使误码率很低
shannon的贡献:
1.提出只要使R<C,C是信道容量,就可以使误码率Pe达到很小
有效性方面:率失真理论,数据压缩,信源编码
可靠性方面:信道编码,纠错编码
周炯磐 信息论基础 人民邮电出版社 1983
王育民 等 信息与编码理论 西北电讯 1986
姜丹 信息理论与编码 中国科大 1992
T.M. Cover Elements of Information theory John Wiley & Sons Inc. 1991
Richard E.Blahut Principles and practice of information theory 1987
1.采用随机变量的方式描述信源
2.语音看作时间的函数,图片看作空间的函数
3信源发出的是一个随机过程
4无记忆信源:X:p(Xi,Xj)=p(Xi)p(Xj)
5。信息量:I(ai)=log(1/Pai)
6 哈特莱首先提出用对数度量信息,为什么是对数?
7 H(x)=E(Ii),各个信息量的平均值,表示随机变量的随机性
H(x)记为H(p1,p2,p3...)
8jensen不等式
(f(E(x))>E(f(x))错,恰好记反了)
学习是来记住公式的吗,要自己去推导,为什么?想起费曼的话,只会考试,而不会解决问题
jensen不等式是有前提条件的,(在凹函数的前提下,错!)
是在u型凸函数的条件下,
有E[f(x)]>f(E(x))
1.有用的不等式“
logx<=x-1
2熵的可加性公式:
H(XY)(联合熵)=H(X)+H(X|Y)(条件熵)
3.(p(bj|ai)=pij 错误),p(bj|ai)=pji, p(ai,bj)=pji*pi=pij*pj