-
U-shape structure
- U-net结构

- 最大池化操作
- 取邻域特征内的最大值提供给下一层
- 可以提升网络模型的精度
- 信息筛选或者过滤的操作
- 好处:
- 减少参数量
- 防止过拟合
- 跳跃连接:为了避免梯度消失引入的机制
- U-net结构
-
多分支框架
- 在 2 分支的网络结构中,较深的分支输入低分辨率图片,目的是为了在保证较少计算开销的前提下有效地提取全局上下文特征;较浅的网络分支输入高分辨率图像,目的是提取空间细节信息。两个分支的计算结果融合,形成最终的语义分割结果。
-
编码器-解码器结构
- 编码器:
编码器通常是一个预先训练的分类网络,如vgg/resnet,然后是一个解码器网络。 - 解码器:
解码器的任务是将编码器学习到的识别特征(低分辨率)语义投影到像素空间(高分辨率)上,得到密集的分类。
- 编码器:
-
backbone
做特征提取的网络,是整个研究的重中之重 -
空间金字塔
解决了特征图大小不一致的问题,也有不同特征融合的效果

-
FC attention模块
- 全连接与注意力机制的区别:
全连接的作用的是对一个实体进行从一个特征空间到另一个特征空间的映射,而注意力机制是要对来自同一个特征空间的多个实体进行整合。
全连接的权重对应的是一个实体上的每个特征的重要性,而注意力机制的输出结果是各个实体的重要性。
注意力机制的意义是引入了权重函数f,使得权重与输入相关,与位置无关,从而避免了全连接层中权重固定的问题。
- 全连接与注意力机制的区别:
-
SGD随机梯度下降
对于单个样本,来更新参数 -
poly学习策略

-
动量优化
和SGD一起使用的流行的技术。Momentum不仅使用当前步骤的梯度,也累计过去步骤的梯度。

-
空洞卷积
在卷积层中注入空洞,以增加感受野
更好地保留内部结构
dilation rate: 定义了卷积核处理数据时各个值的间距 -
ASPP:Atrous Spatial Pyramid Pooling

不同采样率的空洞卷积可以有效捕获多尺度信息 -
交叉熵误差


被折叠的 条评论
为什么被折叠?



