Gemini Nano

因为 Gemini 是 Google 自家的亲儿子,所以 Gemini Nano 自然成了第一个实验对象,它是专为高效运行而设计的 Gemini 系列大型语言模型之一,可以在大部分现代的台式机和笔记本电脑上本地运行。这意味着,我们的网站或网络应用现在可以直接运行 AI 功能,而不需要自己去部署或管理 AI 模型。

与自行部署的设备端 AI 相比,浏览器内置 AI 具有以下优势:
-
易于部署:在浏览器分发模型时,浏览器会考虑设备的功能并管理模型的更新。这意味着,您无需负责通过网络下载或更新大型模型,也无需解决存储空间逐出、运行时内存预算、传送费用等难题。
-
使用硬件加速:浏览器的 AI 运行时经过优化,可充分利用可用硬件,无论是 GPU、NPU 还是回退到 CPU。因此,我们的应用可以在每台设备上获得最佳的性能。
-
离线使用:完全不需要链接互联网也可以使用 AI 大模型。
另外,我们也无需承担自行部署模型的成本,也无需担心使用其他 AI 服务引发的安全隐私问题。
在 Chrome Canary 中启用 Gemini Nano
谷歌目前正在 Chrome Canary 上试验 Gemini Nano,它可以在你的机器上本地运行语言模型。
Chrome Canary是Google Chrome的一个实验版本,专为想要在最新功能和API广泛发布之前测试它们的开发人员和技术爱好者而设计。
想要试用的话,首先需要下载并安装 Chrome Canary https://www.google.com/chrome/canary/,然后为 Gemini Nano 启用 Prompt API。
然后,使用以下 flag 在浏览器中激活 Gemini Nano。
-
chrome://flags/#prompt-api-for-gemini-nano -
chrome://flags/#optimization-guide-on-device-model

激活这些选项后,重新启动 Chrome,然后我们需要等待它将 Gemini Nano 下载到我们的本地机器(尽管模型本身不超过 3GB,但可能需要 22GB 的可用空间)
Gemini Nano 需要一些时间才能下载,在这个过程中,我们可以使用 canCreateTextSession API 来检查模型是否 Ready,它会返回以下三个值:
-
"no",表明设备或浏览器根本不支持 prompt 语言模型。 -
"after-download",表示设备或浏览器支持 prompt 语言模型,但需要下载后才能使用。 -
"readily",表示设备或浏览器支持提示语言模型,无需任何下载步骤即可使用。
如果模型处于下载中的状态,则会提示 after-download。
要确认下载状态,可以打开 chrome://components,检查 Optimization Guide On Device Model 的版本是否为 2024.6.5.2205。

这时,我们调用 canCreateTextSession ,则会显示 readily 。

使用 Prompt API
打印一下 window.ai ,我们发现目前只有以下几个方法

我们可以查看 https://github.com/explainers-by-googlers/prompt-api 来了解这些 API 的用法。

Prompt API 提案是 Chrome 内置 AI 的早期设计提案,此提案的目标是:
-
为
Web开发者提供一个统一的JavaScript API,用于访问浏览器提供的语言模型。 -
尽可能抽象语言模型的具体细节,例如分词、系统消息或控制令牌。
-
引导网页开发者优雅地处理失败情况,例如没有可用的浏览器提供的模型。
-
允许多种实现策略,包括设备上的或基于云的模型,同时将这些细节对开发者进行抽象。
目前的 Chrome Canary 试验 Gemini Nano 的 API 基本也是按照这个提案来的。
我们直接可以用到的 API 就是 createTextSession,它可以用来创造一个回话上下文,然后它提供了完整输出模式、流式输出模式两种方式:
完整输出:
const session = await ai.createTextSession();
const result = await session.prompt("中国的首都是哪里?");
console.log(result);

流式输出:
const stream = await session.promptStreaming("介绍一下北京的互联网公司?");
for await (const chunk of stream) {
console.log(chunk);
}

一个案例
基于浏览器提供的内置 AI 能力,我们可以为我们的网站添加很多有意思的功能,比如下面的场景:
-
对任意文本进行分类、标记和关键词提取;
-
帮助用户撰写文本,如博客文章、评论或传记;
-
总结文章、用户评论或聊天记录;
-
从文章内容生成标题或摘要;
-
基于网页的非结构化内容回答问题;
-
语言之间的翻译;
-
文章校对。
下面是一个小 Demo ,可以用来实现一个简单的划词翻译功能:
首先监听用户鼠标释放事件
document.addEventListener('mouseup', async function() {
// 获取选中的文本并去除首尾空格
let selectedText = window.getSelection().toString().trim();
// 检查选中的文本是否包含英文字母
if (selectedText && /[a-zA-Z]/.test(selectedText)) {
try {
console.log(`正在翻译: ${selectedText}`);
// 调用翻译函数并获取翻译结果
const translatedText = await translateText(selectedText);
console.log(`翻译结果: ${translatedText}`);
} catch (error) {
console.error('翻译错误:', error);
}
}
});
翻译函数,使用 window.ai 进行翻译
async function translateText(text) {
// 创建一个文本会话
const session = await ai.createTextSession();
// 构建翻译提示
const prompt = `Translate the following English text to Chinese: "${text}"`;
// 提示模型并等待翻译结果
const result = await session.prompt(prompt);
return result;
}
效果如下:

借助这个 API ,你还可以用类似的思路,基于非常简单的代码构建非常强大的 AI 功能,希望它可以快点在标准的浏览器版本中推出 ~

483

被折叠的 条评论
为什么被折叠?



