树状数组区间修改,单点查询

普通的单点修改单点查询就不讲了,从区间修改和单点查询讲起。

  原来的值存在a[]里面,多建立个数组c1[],注意:c1[i]=a[i]-a[i-1]。

  那么求a[i]的值的时候a[i]=a[i-1]+c1[i]=a[i-2]+c1[i]+c1[i-1]=…..=c1[1]+c1[2]+…+c1[i]。

  所以就用c1[]建立树状数组,便可以很快查询a[i]的值。不多说,见代码。

#include<iostream>
#include<cstdio>
#define lb(x) x&-x
#define maxn 1000000
#define in(x) scanf("%d",&x)
#define in3(x,y,z) scanf("%d%d%d",&x,&y,&z)
using namespace std;
int a[maxn],c1[maxn],n,m,val,x,y,temp;
void update(int x,int val)
{
    while(x<=n)
    {
        c1[x]+=val;
        x+=lb(x);
    }
}
int sum(int x)
{
    int ans=0;
    while(x)
    {
        ans+=c1[x];
        x-=lb(x);
    }
    return ans;
}
main(){
    in(n);
    in(m);
    for(int i=1;i<=n;i++)
    {
        in(a[i]);
        update(i,a[i]-a[i-1]);
    }
    while(m--)
    {
        in(temp);
        if(temp==1)
        {
            in(x);
            printf("%d\n",sum(x));
        }
        else
        {
            in3(x,y,val);
            update(x,val);
            update(y+1,-val);
        }
    }
}

 

自认为还是比较好看懂的,接下来是区间修改和区间查询了。

  我们用sum(1,k)表示区间1到k的和。

  那么sum(1,k)=c1(1)+(c1(2)+c1(2))+(c1(1)+c1(2)+c1(3))+…+(c1(1)+c1(2)+…+c1(k))。

  然后我们把式子打开。

  sum(1,k)=k*(c1(1)+c1(2)+c1(3)+…+c1(k))-(0*c1*(1)+1*c1(2)+2*c1(3)+…+(k-1)*c1(k))。

  是不是有些小激动,我们可以多建立一个数组c2[],c2[n]用来存(n-1)*c1(n),并且把c2数组也建立成树状数组,那么问题就迎刃而解了。

  详见代码:

#include<iostream>
#include<cstdio>
#define lb(x) x&-x
#define ll long long
#define maxn 1000000
#define in(x) scanf("%lld",&x)
#define in3(x,y,z) scanf("%lld%lld%lld",&x,&y,&z)
using namespace std;
ll a[maxn],c1[maxn],c2[maxn],n,m,val,x,y,temp;

void update(ll *q,ll x,ll val) 
{
    while(x<=n) 
    {
        q[x]+=val;
        x+=lb(x);
    }
}

ll getsum(ll *q,ll x) 
{
    ll ans=0;
    while(x) 
    {
        ans+=q[x];
        x-=lb(x);
    }
    return ans;
}

ll sum(ll x) 
{
    ll ans1,ans2;
    ans1=x*getsum(c1,x);
    ans2=getsum(c2,x);
    return ans1-ans2;
}

ll inquire(ll x,ll y)
{
    ll ans1,ans2;
    ans1=sum(y);
    ans2=sum(x-1);
    return ans1-ans2;
}

int main() {
    in(n);
    in(m);
    for(ll i=1; i<=n; i++) 
    {
        in(a[i]);
        update(c1,i,a[i]-a[i-1]);
        update(c2,i,(i-1)*(a[i]-a[i-1]));
    }
    for(ll i=1; i<=m; i++) 
    {
        in(temp);
        if(temp==0) 
        {
            in3(x,y,val);
            update(c1,x,val);
            update(c1,y+1,-val);
            update(c2,x,(x-1)*val);
            update(c2,y+1,-y*val);

        }
        else
        {
            in(x);
            in(y);
            printf("%lld\n",inquire(x,y));
        }
    }
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
树状数组(Fenwick Tree)是一种用于高效处理区间修改单点查询的数据结构。下面我将介绍如何使用树状数组实现区间修改单点查询。 首先,我们需要定义树状数组的数据结构。树状数组由一个数组和一组操作组成,其中数组用于存储数据,操作用于更新和查询数组中的值。 下面是一个示例的树状数组实现: ```python class FenwickTree: def __init__(self, n): self.size = n self.tree = [0] * (n + 1) def update(self, idx, delta): while idx <= self.size: self.tree[idx] += delta idx += idx & -idx def query(self, idx): res = 0 while idx > 0: res += self.tree[idx] idx -= idx & -idx return res def range_update(self, l, r, delta): self.update(l, delta) self.update(r + 1, -delta) def point_query(self, idx): return self.query(idx) ``` 在上面的代码中,我们定义了一个FenwickTree类,通过构造函数`__init__`来初始化树状数组,并使用`size`来表示数组的大小。`tree`数组用于存储数据。`update`方法用于更新指定位置的值,`query`方法用于查询指定位置之前的求和结果。`range_update`方法用于对指定区间进行修改,`point_query`方法用于查询单个位置的值。 下面是一个示例的使用场景: ```python # 示例使用 n = 10 tree = FenwickTree(n) # 区间修改 [2, 6] 的值加 3 tree.range_update(2, 6, 3) # 查询位置 5 的值 value = tree.point_query(5) print(value) ``` 在上面的示例中,我们创建了一个大小为10的树状数组,并对区间[2, 6]的值进行了修改,将其加3。然后,我们查询了位置5的值,结果为3。 希望以上内容能够帮助到你实现树状数组区间修改单点查询。如果还有其他问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值