hdu 5780 gcd

8 篇文章 0 订阅

http://acm.hdu.edu.cn/showproblem.php?pid=5780

题意:

给定 x,n,求  \sum_{a=1}^n\sum_{b=1}^n\gcd(x^a-1,x^b-1)

假的解法:

一眼看起来,不太可做,按照常见套路,先辗转相除一下,化简得 \sum_{a=1}^n\sum_{b=1}^nx^{gcd(a,b)}-1 (我也不会化简,建议baidu.com)

看起来莫比乌斯反演傻逼题,先化简一下

F(d)=\sum_{d|n}f(n)

f(d)=\sum_{d|n}\mu(\frac{n}{d})F(n)

f(d)=\sum_{d|n}\mu(\frac{n}{d})*\left \lfloor \frac{N}{n} \right \rfloor*\left \lfloor \frac{N}{n} \right \rfloor*x^d

ans=\sum_{d=1}^n\sum_{d|n}\mu(\frac{n}{d})*\left \lfloor \frac{N}{n} \right \rfloor*\left \lfloor \frac{N}{n} \right \rfloor*x^d-n^2

ans=\sum_{T=1}^n*\left \lfloor \frac{N}{n} \right \rfloor*\left \lfloor \frac{N}{n} \right \rfloor*\sum_{k|T}\mu(k)*x^{\frac{T}{k}}-n^2

显然第二个求和符号后面是一个迪利克雷卷积

f(k)=\mu(k),g(k)=x^k,h=(f*g) (迪利克雷卷积)

ans=\sum_{T=1}^n*\left \lfloor \frac{N}{n} \right \rfloor*\left \lfloor \frac{N}{n} \right \rfloor*h(T)-n^2

复杂度 O(Tnlogn)

怎么感觉会超时?不管了,说不定他有保证 \sum\ n 在一定范围内呢,先试试,然后就 TLE 到爆炸

真的题解:

于是看了一下网上的题解,反向枚举公因数,然后通过欧拉函数来实现求出 n 个数中任选两个互质的数字的方案数

\sum_{a=1}^n\sum_{b=1}^nx^{gcd(a,b)}-1

=\sum_{g=1}^{n}x^g\sum_{i=1}^{n/g}\sum_{j=1}^{n/g}[\gcd(a,b)=1]-n^2 (反向枚举公因数)

=\sum_{g=1}^{n}x^g*(2*\sum_{i=1}^{n/g}\phi(i)-1)-n^2  (减去的一是因为 gcd(1,1) = 1 ,被重复算了两次)

然后考虑数论分块,并用等比数列求和公式算次方就可以AC了(并不,还要判公比为 1 )

莫比乌斯反演代码:(TLE)

#include <bits/stdc++.h>
#define ll long long //T了就换int 试试
#define sc scanf
#define pr printf
using namespace std;
const int MAXN = 1e6 + 5;//用板子前先改范围

bool check[MAXN];//值为 false 表示素数,值为 true 表示非素数
//int phi[MAXN];//欧拉函数表
int prime[MAXN];//连续素数表
int mu[MAXN + 10];//莫比乌斯函数
int tot;//素数的个数(从0开始
ll sub[MAXN];

const ll mod = 1e9 + 7;
ll power(ll a, ll b)
{
    ll res = 1;
    while (b)
    {
        if (b & 1)
            res = res * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return res;
}
ll fang[MAXN];

void jzk()
{
    //memset(check, false, sizeof(check));
    //phi[1] = 1;
    mu[1] = 1;
    tot = 0;
    for (int i = 2; i < MAXN; i++)
    {
        if (!check[i])
        {
            prime[tot++] = i;
            //phi[i] = i - 1;
            mu[i] = -1;
        }
        for (int j = 0; j < tot; j++)
        {
            if (i * prime[j] >= MAXN)
                break;
            check[i * prime[j]] = true;
            if (i % prime[j] == 0)
            {
                //phi[i * prime[j]] = phi[i] * prime[j];
                mu[i * prime[j]] = 0;
                break;
            }
            else
            {
                //phi[i * prime[j]] = phi[i] * (prime[j] - 1);
                mu[i * prime[j]] = -mu[i];
            }
        }
    }
}
int main()
{
    jzk();
    int T;
    sc("%d", &T);
    while (T--)
    {
        ll x, n;
        sc("%lld%lld", &x, &n);
        fang[0] = 1;
        for (int i = 1; i <= n; i++)
        {
            fang[i] = fang[i - 1] * x % mod; 
            sub[i] = 0;
        }
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; i * j <= n; j++)
            {
                sub[i * j] = (sub[i * j] + mu[i] * fang[j]) % mod;
            }
        }
        for (int i = 1; i <= n; i++)
            sub[i] = (sub[i] + sub[i - 1]) % mod;
        ll ans = 0, j;
        for (int i = 1; i <= n; i = j + 1)
        {
            j = n / (n / i);
            ans = (ans + (n / j) * (n / j) % mod * (sub[j] - sub[i - 1] + mod)) % mod;
        }
        ans = (ans - n * n % mod + mod) % mod;
        pr("%lld\n", ans);
    }
}

欧拉函数代码:(AC)

#include <bits/stdc++.h>
#define ll long long //T了就换int 试试
#define sc scanf
#define pr printf
using namespace std;
const int MAXN = 1e6 + 5;//用板子前先改范围

bool check[MAXN];//值为 false 表示素数,值为 true 表示非素数
int phi[MAXN];//欧拉函数表
int prime[MAXN];//连续素数表
int mu[MAXN + 10];//莫比乌斯函数
int tot;//素数的个数(从0开始
ll sub[MAXN];

const ll mod = 1e9 + 7;

void jzk()
{
    //memset(check, false, sizeof(check));
    phi[1] = 1;
    mu[1] = 1;
    tot = 0;
    for (int i = 2; i < MAXN; i++)
    {
        if (!check[i])
        {
            prime[tot++] = i;
            phi[i] = i - 1;
            mu[i] = -1;
        }
        for (int j = 0; j < tot; j++)
        {
            if (i * prime[j] >= MAXN)
                break;
            check[i * prime[j]] = true;
            if (i % prime[j] == 0)
            {
                phi[i * prime[j]] = phi[i] * prime[j];
                mu[i * prime[j]] = 0;
                break;
            }
            else
            {
                phi[i * prime[j]] = phi[i] * (prime[j] - 1);
                mu[i * prime[j]] = -mu[i];
            }
        }
    }
    for (int i = 1; i < MAXN; i++)
        sub[i] = (phi[i] + sub[i - 1]) % mod;
}
ll power(ll a, ll b)
{
    ll res = 1;
    while (b)
    {
        if (b & 1)
            res = res * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return res;
}
ll calc(ll k, ll a, ll b)
{
    if (k == 1)
        return b - a;
    ll ans1 = (power(k, a + 1) - k + mod) * power(k - 1, mod - 2) % mod;
    ll ans2 = (power(k, b + 1) - k + mod) * power(k - 1, mod - 2) % mod;
    return (ans2 - ans1 + mod) % mod;
}
int main()
{
    jzk();
    int T;
    sc("%d", &T);
    while (T--)
    {
        ll x, n;
        sc("%lld%lld", &x, &n);
        ll ans = -n * n % mod + mod, j;
        for (int i = 1; i <= n; i = j + 1)
        {
            j = n / (n / i);
            ans = (ans + (2 * sub[n / i] - 1 + mod) * (calc(x, i - 1 , j) + mod)) % mod;
        }

        //for (ll g = 1; g <= n; g++)
            //ans = (ans + fang[g] * (2LL * sub[n / g] - 1) + mod) % mod;
        pr("%lld\n", ans);
    }
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值