静仔小鱼大中华地区代言人
码龄7年
关注
提问 私信
  • 博客:26,907
    26,907
    总访问量
  • 32
    原创
  • 100,847
    排名
  • 26
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2018-01-17
博客简介:

qq_41643701的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    351
    当月
    0
个人成就
  • 获得22次点赞
  • 内容获得3次评论
  • 获得50次收藏
  • 代码片获得124次分享
创作历程
  • 1篇
    2024年
  • 1篇
    2023年
  • 21篇
    2022年
  • 9篇
    2021年
成就勋章
TA的专栏
  • 论文阅读
    15篇
  • 机器学习的数学基础
    2篇
兴趣领域 设置
  • 编程语言
    c++
  • 人工智能
    机器学习
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

安装gpu版本torch--“Defaulting to user installation because normal site-packages is not writeable“解决方法

第一步,检查自己的gpu版本是否支持对应的cuda版本,对应的cuda版本是否支持python版本,是否支持对应的torch版本,这里检查过没有问题。如下展示的是支持的版本号,这里明明有支持python3.8版本,猜测是下载的wheel文件解码后获得的文件名,命名没有统一导致的无法匹配。此处文件名表示,cuda版本11.8,torch版本2.0.0,python版本3.8,操作系统windows,我用的是4060的显卡,python版本为3.8.8,cuda版本为11.8。修改wheel文件名,匹配后缀。
原创
发布博客 2024.06.27 ·
726 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

红黑树查找时间复杂度

总结点数最多时,中间穿插满了红结点;总结点数最少时,全是黑结点。最坏情况下的时间复杂度,为红黑树的最高高度。红黑树查找时间复杂度,为红黑树的高度。因此,红黑树查找时间复杂度。的时候,红黑树最高为多少。所以需要用到的已知条件是。要求的是:在总结点数为。(没有红结点时树高为。
原创
发布博客 2023.05.16 ·
476 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

吴恩达深度学习课程笔记

深度学习笔记
原创
发布博客 2022.08.10 ·
1042 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

【论文阅读】Multi-view Multi-instance Multi-label Active Learning

多视图多实例多标签主动学习。
原创
发布博客 2022.08.03 ·
1195 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

论文阅读--Multi-Attention Multiple Instance Learning

论文阅读
原创
发布博客 2022.06.22 ·
979 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

多示例论文泛读:Revisiting Multiple Instance Neural Networks (2016 mi-Net & MI-Net)

1
原创
发布博客 2022.06.08 ·
193 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

强化学习--马尔可夫决策过程学习笔记

本文学习内容参照视频强化学习基本概念:强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益。其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为。马尔可夫决策过程强化学习的常见模型是标准的马尔可夫决策过程(Markov Decision Process, MDP)马尔可夫性质:通俗地说,马尔可夫性质是指,未来只与当前状态有关,与过去无关。其数学定义为:P[St+1∣St]=P[St+1∣S1
原创
发布博客 2022.06.01 ·
513 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

pytorch错误记录,找不到torch

原因:没有配置解释器解决方法:方法1、创建时:在2处选择miniconda的python编译器,路径为:…\miniconda3\python.exe方法2:修改环境配置:选这个有(base)的
原创
发布博客 2022.05.26 ·
995 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

Neural Networks for Multi-Instance Learning代码复现

Neural Networks for Multi-Instance Learning论文阅读笔记多示例数据的数据集结构与单实例的数据不同,一个样本由一个包表示,一个包中有多个实例,标签被分配给包而不是实例。定义加载多示例数据集的方法如下,接收输入path为包的路径,# 加载普通MIL数据集def Load_data(path, ne_label=0): data = loadmat(path)['data'] dataset_name = path.split('/')[-1].s
原创
发布博客 2022.05.25 ·
669 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

Pytorch学习笔记

神经网络训练过程定义神经网络迭代输入数据神经网络计算输出计算损失反向传递梯度回到网络的参数更新网络的权重卷积层(Convolutional Neural Network,CNN)卷积神经网络是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。输入层:在使用卷积神经网络进行图像识别时,输入为进行过转换的图片数据,一张宽为w,高为h,深度为d的图片,表示为hwd。这里,深度为图像存储每个像素所用的位数,比如彩色图像,其一个像素有RGB三个分量,
原创
发布博客 2022.05.18 ·
4537 阅读 ·
3 点赞 ·
1 评论 ·
13 收藏

多示例论文泛读--Attention-based Deep Multiple Instance Learning

基本概念Permutation Invariant:指的是特征之间没有空间位置关系Pooling(池化):是卷积神经网络中的一个重要的概念,它实际上是一种形式的降采样。多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效的原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上
原创
发布博客 2022.05.11 ·
754 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

机器学习之决策树算法:日撸Java三百行学习笔记

1、决策树概念官方严谨解释:决策树经典的机器学习算法,是基于树的结构来进行决策的。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。我的理解:就是不断的做“决策”,做出的许多决策形成多个分支,最后变成一个树的形状。如图所示是一个判断用户是否喜欢某电影的决策过程。2、熵信息熵:指系统混乱的程度,信息熵越小,不确定性越小,决策树的分类结点的纯度越高,决策树的分支结点所包含的样本越可能属于同一类
原创
发布博客 2022.05.09 ·
161 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文阅读及神经网络学习----Neural Networks for Multi-Instance Learning

神经网络神经网络由多个layer(单层)组成,一层就是一个函数。这是一个最简单的网络结构,f()f()f()就是一个layer 输入样本xxx为一个1×d1\times d1×d的矩阵,通过f()f()f()得到1×l1\times l1×l的输出wxwxwx,其中www是d×ld\times ld×l的矩阵。使用神经网络进行预测,真实标签:YYY预测标签:Y^\hat{Y}Y^损失:loss =∣Y^−Y∣2=(wx−Y)2|\hat{Y}-Y|^{2}=(wx-Y)^{2}∣Y^−Y∣2=
原创
发布博客 2022.05.04 ·
1067 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

多示例论文阅读--Multi-Instance Ensemble Learning With Discriminative Bags

TBBM传统的基于包的映射算法仅考虑空间分布来生成kBagSet(关键包集)ELDB基于判别包的映射算法进一步考虑数据的标签信息来生成一个dBagSet(鉴别包集)并引入一种自增强机制来学习和更新现有的dBagSet使用集成技术生成一系列加权模型。主要的两个特点:判别包选择技术分类器集成方法三条研究路线与我们的工作直接相关。基于实例的判别分析基于选定实例设计映射函数,并将包转换为新的特征空间。最简单的方法是从整个实例空间中构造映射函数,使用fsC(Bi,x)=min
原创
发布博客 2022.04.21 ·
1836 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文写作心得

这是一篇中文论文的写作心得开始写论文的心理准备写一篇论文真的不容易哇,每一句话都要反复斟酌修改。但是也不要因为这样就畏手畏脚,首先是要开始动笔,先搭出基本框架,最后再在这基础上修修补补。就拿我们机器学习领域的论文来说,通常先从一篇文章的算法部分开始写。第一步确定自己的符号系统,最好是在文中用一个符号表把重要的符号列出来,这样既方便读者也方便自己。第二步写伪代码,伪代码写作心得放在后面。第三步就是写整体算法的具体描述,包括提出的公式或者定义等。工具中文论文一般使用word写作,cgckd的要求
原创
发布博客 2022.04.16 ·
697 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

超级水王问题

水王数:一个数组中有一个数,出现次数大于总数的一半,即为水王数目标:找出水王数,时间复杂度O(N),空间复杂度O(1)解决办法:一次删掉两个不同的数,最后水王数一定会剩下来反之不成立,即剩下来的数不一定是水王数没有数剩下来,则没有水王数如何优雅的一次删掉两个不同的数:水王候选:初始为null候选血量:初始为0规则:开始遍历,血量为0时表示无水王候选若无候选==>置当前是数为水王候选,血量为1若有候选若当前数值等于候选 ==>血量+1若当前是数值不等于候选==&g
原创
发布博客 2022.03.02 ·
266 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

多示例论文泛读--2019-1-Fast Multi-Instance Multi-Label Learning

题目Fast Multi-Instance Multi-Label Learning快速多实例多标签搜索算法思路要处理多个标签的问题,最简单的方法是通过为每个标签独立训练一个模型,将其退化为一系列单标签问题。基于标签lll分类模型对实例x\mathbf{x}x的分类:fl(x)=wl⊤W0xf_{l}(\mathbf{x})=\mathbf{w}_{l}^{\top} W_{0} \mathbf{x}fl​(x)=wl⊤​W0​x实例x\mathbf{x}x的分类,W0W_{0}W0​是映射原
原创
发布博客 2022.03.01 ·
586 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

多示例论文泛读--Query-Driven Multi-Instance Learning

题目Query-Driven Multi-Instance Learning查询驱动的多实例学习Bib在这里插入代码片相关概念多示例多标签:现有的 MIML 监督学习方法提供了与每个训练包相关联的完整二进制标签向量,因此可以访问包中任何类标签的存在...
原创
发布博客 2022.02.08 ·
256 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

多示例论文泛读--2018-1-MIRSVM_ Multi-instance support vector machine with bag representatives

题目MIRSVM: Multi-instance support vector machine with bag representatives包代表的多实例支持向量机符号系统符号含义nnn包的个数mmm示例的个数ddd示例的属性个数B={B1,…,Bn}\mathcal{B}=\left\{\mathcal{B}_{1}, \ldots, \mathcal{B}_{n}\right\}B={B1​,…,Bn​}包的集合...
原创
发布博客 2022.01.29 ·
1417 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

多示例论文泛读--2018-1-Landmark-based deep multi-instance learning for brain disease diagnosis

题目Landmark-based deep multi-instance learning for brain disease diagnosis基于地标的深度多实例学习用于脑疾病诊断符号系统摘要传统的基于磁共振(MR)图像的方法 两个阶段1、手动将每个 MR 图像划分为多个感兴趣区域(ROI)2、 从每个 ROI 中提取预定义的特征,用某个分类器进行诊断。本文提出了一种基于地标的深度多实例学习 (LDMIL) 框架,用于脑疾病诊断。本文首先采用数据驱动的学习方法来发现大脑 MR 图像中
原创
发布博客 2022.01.28 ·
2753 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多