假设检验

假设检验

中心极限定理
如果总体均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2,我们进行随机抽样,样本容量为 n n n,当 n n n增大时,则样本均值 X ‾ \overline{X} X ~ N ( μ , σ 2 / n ) N(\mu,\sigma^2/n) N(μ,σ2/n)

我们会得到如下结论:
1、进行多次抽样,则每次抽样会得到一个均值,这些均值会围绕在总体均值左右,呈正态分布。
2、当样本容量 n n n足够大时,样本均值服从正态分布。

  • 样本均值构成的正态分布,其均值等于总体均值 μ \mu μ
  • 样本均值构成的正态分布,其标准差等于总体标准差 σ \sigma σ除以 n \sqrt{n} n

说明:

  • 样本均值分布的标准差,我们成为标准误差,简称标准误
  • 要能够区分总体的标准差,样本的标准差和标准误
  • n n n是样本容量不是抽样次数

正态分布的特性
在正态分布中,数据的分布比例如下:

  • 以均值为中心,在1倍标准差内( μ − σ \mu-\sigma μσ, μ + σ \mu+\sigma μ+σ),包含约68%的样本数据
  • 以均值为中心,在2倍标准差内( μ − 2 σ \mu-2\sigma μ2σ, μ + 2 σ \mu+2\sigma μ+2σ),包含约95%的样本数据
  • 以均值为中心,在3倍标准差内( μ − 3 σ \mu-3\sigma μ3σ, μ + 3 σ \mu+3\sigma μ+3σ),包含约99.7%的样本数据

根据中心极限定理,如果多次抽样(总体的均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2),则样本均值( X ‾ \overline{X} X)构成的正态分布,满足 X ‾ \overline{X} X ~ N ( μ , σ 2 / n ) N(\mu,\sigma^2/n) N(μ,σ2/n)。如果我对总体进行一次抽样,则该样本的均值有95%的概率会会在( μ − 2 σ \mu-2\sigma μ2σ, μ + 2 σ \mu+2\sigma μ+2σ)范围内,仅有5%的概率会在( μ − 2 σ \mu-2\sigma μ2σ, μ + 2 σ \mu+2\sigma μ+2σ)范围外。根据小概率事件(很小的概率在一次抽样中基本不会发生),如果抽样的样本均值在( μ − 2 σ \mu-2\sigma μ2σ, μ + 2 σ \mu+2\sigma μ+2σ)之外,我们就可以人为,本次抽样来自的总体,该总体的均值并非是我们所期望的均值。

通常,我们已2倍标准差作为判定依据,则以样本均值为中心,正负2倍标准差构成的区间,就是置信区间。而2倍标准差包含了95%的数据,因此,此时的置信度为95%。换言之,我们有95%的信心认为,总体的均值会在置信区间之内。

例如
有10000个数字(总体,实际上比10000还要大),均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2,进行随机抽样,抽取 k k k次,每次抽取36个数字,即 n n n=36,抽一次有一个均值 m 1 m_1 m1,抽第二次有一个均值 m 2 m_2 m2,抽第 k k k次有一个均值 m k m_k mk,即均值分布 m 1 , m 2 , . . . , m k m_1,m_2,...,m_k m1,m2,...,mk服从正态分布 N ( μ , σ 2 / n ) N(\mu,\sigma^2/n) N(μ,σ2/n)
而我们实际抽样中,只会抽取一次样本,即 k k k=1,因此得出样本均值 X ‾ \overline{X} X,我们有95%的把握认为它会在以 μ \mu μ为中心,正负2倍标准差(即 σ / n \sigma/\sqrt{n} σ/n )的区间内,反过来,我们有95%的把握认为总体均值会在以 X ‾ \overline{X} X为中心,正负2倍标准差(即 σ / n \sigma/\sqrt{n} σ/n )的区间内。

假设检验:假设检验就是先对总体的参数提出某种假设,然后利用样本的信息判断假设是否成立的过程。
显著性水平:显著性水平是原假设为真时,拒绝原假设的概率,显著性水平为一个概率值。表示为 α \alpha α,常取为0.05,0.01,0.1
假设检验的两种错误
第一类错误,也称 α \alpha α错误,即原假设为真时,但拒绝原假设所犯的错误(拒真);
第二类错误,也称 β \beta β错误,即原假设错误时,反而接受原假设的情况(取伪)。

双边检验 H 0 H_0 H0 μ = μ 0 \mu=\mu_0 μ=μ0 H 1 H_1 H1 μ ≠ μ 0 \mu\neq\mu_0 μ=μ0
单边检验:分为左边检验和右边检验
左边检验:当假设关键词有不得少于/低于的时候用左边检验,比如灯泡的使用寿命不得少于/低于700小时, H 0 H_0 H0 μ ≥ μ 0 \mu\geq\mu_0 μμ0 H 1 H_1 H1 μ < μ 0 \mu<\mu_0 μ<μ0
右边检验:当假设关键词有不得多于/高于的时候用右侧检验,比如次品率不得多于/高于5%时, H 0 H_0 H0 μ ≤ μ 0 \mu\leq\mu_0 μμ0 H 1 H_1 H1 μ > μ 0 \mu>\mu_0 μ>μ0

P P P P P P值表示支持原假设的概率

Z Z Z检验 Z Z Z检验用来判断样本均值是否与总体均值具有显著性差异, Z Z Z检验是通过正态分布的理论来判断差异发生的概率,从而比较两个均值的差异是否显著。 Z Z Z检验适用于:

  • 总体呈正态分布
  • 总体方差已知
  • 样本容量较大(一般 ≥ \geq 30)
    以上三点并不是需要全都满足,1、3满足一点即可

Z Z Z统计量计算方式如下: Z = x ˉ − μ 0 S x ˉ = x ˉ − μ 0 σ / n Z=\frac {\bar{x}-\mu_0}{S_{\bar{x}}}=\frac {\bar{x}-\mu_0}{{\sigma}/{\sqrt{\smash[b]{n}}}} Z=Sxˉxˉμ0=σ/n xˉμ0

  • x ˉ \bar{x} xˉ:样本均值
  • μ 0 \mu_0 μ0:待检验的总体均值(假设的总体均值)
  • S x ˉ S_{\bar{x}} Sxˉ:样本均值分布的标准差(标准误)
  • σ \sigma σ:总体的标准差
  • n n n:样本容量

t t t检验: t t t检验与 Z Z Z检验类似,用来判断样本均值是否与总体均值具有显著性差异,不过, t t t检验是基于 t t t分布的, t t t检验适用于:

  • 总体呈正态分布
  • 总体方差未知
  • 样本数量较少(<30)
    不过随着样本容量的增大(样本量达到30以上时), t t t分布逐渐接近于正态分布,此时, t t t检验也就近似于 Z Z Z检验。

t t t统计量计算方式如下: t = x ˉ − μ 0 S x ˉ = x ˉ − μ 0 S / n t=\frac {\bar{x}-\mu_0}{S_{\bar{x}}}=\frac {\bar{x}-\mu_0}{S/{\sqrt{\smash[b]{n}}}} t=Sxˉxˉμ0=S/n xˉμ0

  • x ˉ \bar{x} xˉ:样本均值
  • μ 0 \mu_0 μ0:待检验的总体均值(假设的总体均值)
  • S x ˉ S_{\bar{x}} Sxˉ:样本均值分布的标准差(标准误)
  • S S S:样本的标准差
  • n n n:样本容量
    因为总体的标准差未知,只能用样本的标准差代替总体的标准差,因此 t t t检验服从于 t t t分布,而不是正态分布,但随着 n n n不断增大, t t t分布逐渐接近于正态分布, t t t检验也就近似于 Z Z Z检验。

Z Z Z统计量和 t t t统计量其实都表示几倍的标准差,以 α \alpha α=0.05为例,若计算所得统计量>1.96( P < α P<\alpha P<α),就表示总体均值落在了拒绝域内,因此拒绝 H 0 H_0 H0,接受 H 1 H_1 H1

双边检验: x = − ∣ Z ∣ x=-\left|Z\right| x=Z这条直线以左的部分与分布曲线围城的面积加上 x = ∣ Z ∣ x=\left|Z\right| x=Z这条直线以右的部分与分布曲线围城的面积等于 P P P值。( t t t检验同理)
左边检验: x = Z x=Z x=Z这条直线以左的部分与分布曲线围城的面积即为 P P P值。( t t t检验同理)
右边检验: x = Z x=Z x=Z这条直线以右的部分与分布曲线围城的面积即为 P P P值。( t t t检验同理)

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值