NLP高频面试题(十八)——什么是prefill和decoder分离架构

在大型语言模型(LLM)推理中,经常会听到“Prefill 阶段”和“Decoder 阶段”这两个术语,以及最近业界提出的Prefill-Decoder 分离架构。对于初学者来说,这些概念可能有些陌生。简单来说,可以将整个推理过程想象成两部分:**第一部分(Prefill)**就像模型阅读并“记忆”输入内容,第二部分(Decoder)则是模型根据记忆逐字逐句生成回答。这两部分对计算资源的需求和运行方式截然不同,带来了很多工程上的挑战和优化空间。

在本文中,我们将以通俗易懂的方式介绍大型模型推理中的 Prefill 与 Decoder 阶段,并重点讲解为何要将这两阶段解耦为分离架构。我们还将结合 Moonshot 团队的 Kimi 大模型实际案例,看看它如何通过 Prefill-Decoder 分离架构克服推理中的资源挑战,实现高效的模型服务。文章将包含以下内容:

  • 引言:大型模型推理的资源挑战,以及 Prefill 阶段和 Decoder 阶段的基本概念。
  • 技术背景:Transformer 模型的推理流程、KV Cache(键值缓存)的作用,以及 Prefill 和 Decoder 两阶段在计算资源占用和时序上的差异。
  • Prefill-Decoder 分离的动机&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaos_Wang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值