L2-006. 树的遍历 +L2-011 玩转二叉树

这是一篇关于二叉树遍历的问题,包括给定后序和中序遍历重建二叉树并输出层序遍历,以及对二叉树进行镜面反转后再输出层序遍历。题目提供了输入输出样例,并附带了相应的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列。这里假设键值都是互不相等的正整数。

输入格式:

输入第一行给出一个正整数N(<=30),是二叉树中结点的个数。第二行给出其后序遍历序列。第三行给出其中序遍历序列。数字间以空格分隔。

输出格式:

在一行中输出该树的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。

输入样例:
7
2 3 1 5 7 6 4
1 2 3 4 5 6 7
输出样例:
4 1 6 3 5 7 2


代码:


// 中序遍历[l1....l2]后序遍历[r1....r2]
int build(int l1,int l2,int r1,int r2){
	if(l1>l2) return 0;//空树
	int root  = PostOrder[r2];//定义根节点
	int p=0;//距离
	while(InOrder[p+l1] != root) p++;//寻找根节点
	a[root].l = build(l1,l1+p-1,r1,r1+p-1);//建立左子树 去掉根节点 加上距离 
	a[root].r= build(l1+p+1,l2,r1+p,r2-1);//建立右子树
	return root;
}

L2-011 玩转二叉树 (25 分)

给定一棵二叉树的中序遍历和前序遍历,请你先将树做个镜面反转,再输出反转后的层序遍历的序列。所谓镜面反转,是指将所有非叶结点的左右孩子对换。这里假设键值都是互不相等的正整数。

输入格式:

输入第一行给出一个正整数N(≤30),是二叉树中结点的个数。第二行给出其中序遍历序列。第三行给出其前序遍历序列。数字间以空格分隔。

输出格式:

在一行中输出该树反转后的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。

输入样例:

7
1 2 3 4 5 6 7
4 1 3 2 6 5 7

输出样例:

4 6 1 7 5 3 2

 


int mid[N],first[N],n;//la 中序  lb前序
int rebuild(int la,int ra,int lb,int rb)
{
     if(la>ra) return -1;
     int rt=first[lb];
     int c=0;//距离
     while(mid[c+la]!=rt) c++;
     a[rt].l=rebuild(la,la+c-1,lb+1,lb+c);//去掉根节点 加上距离 
     a[rt].r=rebuild(la+c+1,ra,lb+c+1,rb);//分割两半
   
     return rt;
}

 

#include <iostream>
#include<bits/stdc++.h>
#include <vector>
#include <queue>
using namespace std;
const int maxn=35;
int InOrder[maxn],PostOrder[maxn];
struct Node{//定义树的左右两个子树
	int r,l;
}a[maxn];


// 中序遍历[l1....l2]后序遍历[r1....r2]
int build(int l1,int l2,int r1,int r2){
	if(l1>l2) return 0;//空树
	int root  = PostOrder[r2];//定义根节点
	int p=0;//距离
	while(InOrder[p+l1] != root) p++;//寻找根节点
	a[root].l = build(l1,l1+p-1,r1,r1+p-1);//建立左子树 去掉根节点 加上距离 
	a[root].r= build(l1+p+1,l2,r1+p,r2-1);//建立右子树
	return root;
}
void bfs(int x){//层次(广度优先搜索)
	queue<int>q;//队列
	vector<int>v;//不等长数组
	q.push(x);//将x压入队列
	while(!q.empty()){
		int w = q.front();//取队列首元素(不删除)
		q.pop();//出队列
		if(w == 0) break;//判空
		v.push_back(w);//结果放在不等长数组中
		if(a[w].l!=0){
			q.push(a[w].l);
		}
		if(a[w].r!=0){
			q.push(a[w].r);
		}
	}
	int len = v.size();
	for(int i=0;i<len;i++){//输出
		printf("%d%c",v[i],i==len-1?'\n':' ');
	}
	return ;


}
int main(){
	int n;
	scanf("%d",&n);
	for(int i=0;i<n;i++){
		scanf("%d",&PostOrder[i]);
	}
	for(int i=0;i<n;i++){
		scanf("%d",&InOrder[i]);
	}
	build(0,n-1,0,n-1);//建树
	int root = PostOrder[n-1];//找树根
	bfs(root);//广度优先遍历
	return 0;
}

 

 

#include<bits/stdc++.h>
using namespace std;
const int N=1200;
struct node
{
     int l=-1,r=-1;
}a[N];
int mid[N],first[N],n;//la 中序  lb前序
int rebuild(int la,int ra,int lb,int rb)
{
     if(la>ra) return -1;
     int rt=first[lb];
     int c=0;//距离
     while(mid[c+la]!=rt) c++;
     a[rt].l=rebuild(la,la+c-1,lb+1,lb+c);//去掉根节点 加上距离 
     a[rt].r=rebuild(la+c+1,ra,lb+c+1,rb);//分割两半
   
     return rt;
}
void dfs(int x)
{
     queue<int>q;
     q.push(x);
     while(!q.empty())
     {
          int t=q.front() ;
          q.pop();

          if(a[t].r!=-1) q.push(a[t].r);
          if(a[t].l!=-1) q.push(a[t].l);
          printf("%d",t);
          if(!q.empty()) printf(" ");
     }
}
int main()
{
     cin>>n;
     for(int i=0;i<n;i++) cin>>mid[i];
     for(int i=0;i<n;i++) cin>>first[i];
     rebuild(0,n-1,0,n-1);//printf("HH\n");
     dfs(first[0]);
     return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值