对一个十进制数的各位数字做一次立方和,称作一次迭代。如果一个十进制数能通过 h 次迭代得到 1,就称该数为三阶幸福数,迭代的次数 h 称为幸福度。例如 1579 经过 1 次迭代得到 1198,2 次迭代后得到 1243,3 次迭代后得到 100,最后得到 1。则 1579 是幸福数,其幸福度为 4。
另一方面,如果一个大于1的数字经过数次迭代后进入了死循环,那这个数就不幸福。例如 97 迭代得到 1072、352、160、217、352、…… 可见 352 到 217 形成了死循环,所以 97 就不幸福,而 352 就是它最早遇到的循环点。
本题就要求你编写程序,判断一个给定的数字是否有三阶幸福。
输入格式:
输入在第一行给出一个不超过 100 的正整数 N,随后 N 行,每行给出一个不超过 10^4 的正整数。
输出格式:
对于每一个输入的数字,如果其是三阶幸福数,则在一行中输出它的幸福度;否则输出最早遇到的循环点。
输入样例:
3
1579
97
1
输出样例:
4
352
0
思路:将遍历过的数利用set来保存,利用cnt来处理迭代次数,当当前迭代的数在set中时,输出当前迭代的数。当当前迭代的数为1时,输出cnt.
但这里有一个特判,就是第三个数据“1”。当输入为1时,无需迭代。
参考代码:
#include<bits/stdc++.h>
using namespace std;
set<int> st;
int main(){
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++){
int s;
scanf("%d",&s);
st.clear();
int cnt=0;
int temp=s;
if(temp==1){
printf("0\n");
}
else while(true){
cnt++;
st.insert(temp);
int t=0;
while(temp){
t+=(temp%10)*(temp%10)*(temp%10);
temp/=10;
}
//printf("%d\n",t);
if(t==1){
printf("%d\n",cnt);
break;
}else if(st.find(t)!=st.end()){
printf("%d\n",t);
break;
}
temp=t;
}
}
return 0;
}
博客探讨了如何判断一个正整数是否为三阶幸福数,即通过立方和迭代达到1的数字。内容包括定义、迭代过程、死循环的识别,并提供了输入输出格式、样例以及解决问题的思路和参考代码。主要涉及算法和编程问题。
1552

被折叠的 条评论
为什么被折叠?



