Datawhale X 魔搭 AI夏令营

1. 学习Diffusion model的前向过程(通义千问)

        扩散模型(diffusion model)是一种生成模型,在机器学习领域中用于生成新的数据样本。扩散模型的一个典型例子是高斯过程扩散模型(Gaussian Process based Diffusion Model),但更常见的可能是指最近在深度学习社区中非常流行的得分匹配(score-matching)和去噪扩散概率模型(denoising diffusion probabilistic models, DDPMs)。

1.1 前向过程 

        这个过程可以被视为一种编码机制,其中原始数据被编码为带有噪声的表示。在训练过程中,模型会学习如何逆向这个过程,即后向过程(去噪过程),从而能够生成新的数据样本。

1.2 数学推导

   

2. 代码学习

2.1 代码注释学习

# 安装 Data-Juicer 和 DiffSynth-Studio
!pip install simple-aesthetics-predictor # 安装simple-aesthetics-predictor
!pip install -v -e data-juicer # 安装data-juicer
!pip uninstall pytorch-lightning -y # 卸载pytorch-lightning
!pip install peft lightning pandas torchvision # 安装 peft lightning pandas torchvision
!pip install -e DiffSynth-Studio # 安装DiffSynth-Studio

# 从魔搭数据集中下载数据集AI-ModelScope/lowres_anime
from modelscope.msdatasets import MsDataset  #引入数据集模块msdatasets
ds = MsDataset.load(
    'AI-ModelScope/lowres_anime',
    subset_name='default',
    split='train',
    cache_dir="/mnt/workspace/kolors/data" # 指定缓存目录
) # 从魔搭数据集中下载数据集AI-ModelScope/lowres_anime,赋值给参数ds

# 生成数据集
import json, os # 导入json和os模块
from data_juicer.utils.mm_utils import SpecialTokens # 导入SpecialTokens
from tqdm import tqdm # 导入tqdm进度条管理
os.makedirs("./data/lora_dataset/train", exist_ok=True) # 创建文件夹./data/lora_dataset/train
os.makedirs("./data/data-juicer/input", exist_ok=True) # 创建文件夹./data/data-juicer/input
with open("./data/data-juicer/input/metadata.jsonl", "w") as f:
    for data_id, data in enumerate(tqdm(ds)): # 遍历数据集ds
        image = data["image"].convert("RGB") # 将数据集的图片转换为RGB
        image.save(f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg") # 保存数据集的图片
        metadata = {"text": "二次元", "image": [f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg"]} # 生成当前图片的索引数据
        f.write(json.dumps(metadata)) # 将索引数据写入文件./data/data-juicer/input/metadata.jsonl
        f.write("\n")

# 配置data-juicer,并进行数据筛选过滤
# 配置过滤的规则
data_juicer_config = """
# global parameters
project_name: 'data-process' # 名称
dataset_path: './data/data-juicer/input/metadata.jsonl'  # 你前面生成的数据的索引文件
np: 4  # 线程数

text_keys: 'text' # 文件./data/data-juicer/input/metadata.jsonl的描述的字段名
image_key: 'image' # 文件./data/data-juicer/input/metadata.jsonl的图片字段名
image_special_token: '<__dj__image>'

export_path: './data/data-juicer/output/result.jsonl' # 筛选通过的图片结果保存的的索引文件

# process schedule
# a list of several process operators with their arguments
# 过滤的规则
process:
    - image_shape_filter: # 图片尺寸过滤
        min_width: 1024 # 最小宽度1024
        min_height: 1024 # 最小高度1024
        any_or_all: any # 符合前面条件的图片才会被保留
    - image_aspect_ratio_filter: # 图片长宽比过滤
        min_ratio: 0.5 # 最小长宽比0.5
        max_ratio: 2.0 # 最大长宽比2.0
        any_or_all: any # 符合前面条件的图片才会被保留
"""

# 保存data-juicer配置到data/data-juicer/data_juicer_config.yaml
with open("data/data-juicer/data_juicer_config.yaml", "w") as file:
    file.write(data_juicer_config.strip())
# data-juicer开始执行数据筛选
!dj-process --config data/data-juicer/data_juicer_config.yaml


# 通过前面通过data-juicer筛选的图片索引信息./data/data-juicer/output/result.jsonl,生成数据集
import pandas as pd # 导入pandas
import os, json # 导入os和json
from PIL import Image # 导入Image
from tqdm import tqdm # 导入tqdm进度条管理
texts, file_names = [], [] # 定义两个空列表,分别存储图片描述和图片名称
os.makedirs("./data/lora_dataset_processed/train", exist_ok=True) # 创建文件夹./data/lora_dataset_processed/train
with open("./data/data-juicer/output/result.jsonl", "r") as file: # 打开前面data-juicer筛选的图片索引文件./data/data-juicer/output/result.jsonl
    for data_id, data in enumerate(tqdm(file.readlines())): # 遍历文件./data/data-juicer/output/result.jsonl
        data = json.loads(data) # 将json字符串转换为对象
        text = data["text"] # 获取对象中的text属性,也就是图片的描述信息
        texts.append(text) # 将图片的描述信息添加到texts列表中
        image = Image.open(data["image"][0]) # 获取对象中的image属性,也就是图片的路径,然后用这个路径打开图片
        image_path = f"./data/lora_dataset_processed/train/{data_id}.jpg" # 生成保存图片的路径
        image.save(image_path) # 将图片保存到./data/lora_dataset_processed/train文件夹中
        file_names.append(f"{data_id}.jpg") # 将图片名称添加到file_names列表中
data_frame = pd.DataFrame() # 创建空的DataFrame
data_frame["file_name"] = file_names # 将图片名称添加到data_frame中
data_frame["text"] = texts # 将图片描述添加到data_frame中
data_frame.to_csv("./data/lora_dataset_processed/train/metadata.csv", index=False, encoding="utf-8-sig") # 将data_frame保存到./data/lora_dataset_processed/train/metadata.csv
data_frame # 查看data_frame


# 下载可图模型
from diffsynth import download_models # 导入download_models
download_models(["Kolors", "SDXL-vae-fp16-fix"]) # 下载可图模型
# DiffSynth-Studio提供了可图的Lora训练脚本,查看脚本信息
!python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py -h


# 执行可图Lora训练
import os
cmd = """
python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py \ # 选择使用可图的Lora训练脚本DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py
  --pretrained_unet_path models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors \ # 选择unet模型
  --pretrained_text_encoder_path models/kolors/Kolors/text_encoder \ # 选择text_encoder
  --pretrained_fp16_vae_path models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors \ # 选择vae模型
  --lora_rank 16 \ # lora_rank 16 表示在权衡模型表达能力和训练效率时,选择了使用 16 作为秩,适合在不显著降低模型性能的前提下,通过 LoRA 减少计算和内存的需求
  --lora_alpha 4.0 \ # 设置 LoRA 的 alpha 值,影响调整的强度
  --dataset_path data/lora_dataset_processed \ # 指定数据集路径,用于训练模型
  --output_path ./models \ # 指定输出路径,用于保存模型
  --max_epochs 1 \ # 设置最大训练轮数为 1
  --center_crop \ # 启用中心裁剪,这通常用于图像预处理
  --use_gradient_checkpointing \ # 启用梯度检查点技术,以节省内存
  --precision "16-mixed" # 指定训练时的精度为混合 16 位精度(half precision),这可以加速训练并减少显存使用
""".strip()
os.system(cmd) # 执行可图Lora训练


# 加载lora微调后的模型
from diffsynth import ModelManager, SDXLImagePipeline # 导入ModelManager和SDXLImagePipeline
from peft import LoraConfig, inject_adapter_in_model # 导入LoraConfig和inject_adapter_in_model
import torch # 导入torch
# 加载LoRA配置并注入模型
def load_lora(model, lora_rank, lora_alpha, lora_path):
    lora_config = LoraConfig(
        r=lora_rank, # 设置LoRA的秩(rank)
        lora_alpha=lora_alpha, # 设置LoRA的alpha值,控制LoRA的影响权重
        init_lora_weights="gaussian", # 初始化LoRA权重为高斯分布
        target_modules=["to_q", "to_k", "to_v", "to_out"], # 指定要应用LoRA的模块
    )
    model = inject_adapter_in_model(lora_config, model) # 将LoRA配置注入到模型中
    state_dict = torch.load(lora_path, map_location="cpu") # 加载LoRA微调后的权重
    model.load_state_dict(state_dict, strict=False) # 将权重加载到模型中,允许部分权重不匹配
    return model # 返回注入LoRA后的模型
# 加载预训练模型
model_manager = ModelManager(
    torch_dtype=torch.float16, # 设置模型的数据类型为float16,减少显存占用
    device="cuda", # 指定使用GPU进行计算
    file_path_list=[
        "models/kolors/Kolors/text_encoder", # 文本编码器的路径
        "models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors", # UNet模型的路径
        "models/kolors/Kolors/vae/diffusion_pytorch_model.safetensors" # VAE模型的路径
    ]
)
# 初始化图像生成管道
pipe = SDXLImagePipeline.from_model_manager(model_manager) # 从模型管理器中加载模型并初始化管道
# 加载并应用LoRA权重到UNet模型
pipe.unet = load_lora(
    pipe.unet, 
    lora_rank=16, # 设置LoRA的秩(rank),与训练脚本中的参数保持一致
    lora_alpha=2.0, # 设置LoRA的alpha值,控制LoRA对模型的影响权重
    lora_path="models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt" # 指定LoRA权重的文件路径
)


# 生成图像
torch.manual_seed(0) # 设置随机种子,确保生成的图像具有可重复性。如果想要每次生成不同的图像,可以将种子值改为随机值。
image = pipe(
    prompt="二次元,一个紫色短发小女孩,在家中沙发上坐着,双手托着腮,很无聊,全身,粉色连衣裙", # 设置正向提示词,用于指导模型生成图像的内容
    negative_prompt="丑陋、变形、嘈杂、模糊、低对比度", # 设置负向提示词,模型会避免生成包含这些特征的图像
    cfg_scale=4, # 设置分类自由度 (Classifier-Free Guidance) 的比例,数值越高,模型越严格地遵循提示词
    num_inference_steps=50, # 设置推理步数,步数越多,生成的图像细节越丰富,但生成时间也更长
    height=1024, width=1024, # 设置生成图像的高度和宽度,这里生成 1024x1024 像素的图像
)
image.save("1.jpg") # 将生成的图像保存为 "1.jpg" 文件


# 图像拼接,展示总体拼接大图
import numpy as np  # 导入numpy库,用于处理数组和数值计算
from PIL import Image  # 导入PIL库中的Image模块,用于图像处理
images = [np.array(Image.open(f"{i}.jpg")) for i in range(1, 9)]  # 读取1.jpg到8.jpg的图像,转换为numpy数组,并存储在列表images中
image = np.concatenate([  # 将四组图像在垂直方向上拼接
    np.concatenate(images[0:2], axis=1),  # 将第1组(images[0:2])的两张图像在水平方向上拼接
    np.concatenate(images[2:4], axis=1),  # 将第2组(images[2:4])的两张图像在水平方向上拼接
    np.concatenate(images[4:6], axis=1),  # 将第3组(images[4:6])的两张图像在水平方向上拼接
    np.concatenate(images[6:8], axis=1),  # 将第4组(images[6:8])的两张图像在水平方向上拼接
], axis=0)  # 将四组拼接后的图像在垂直方向上拼接
image = Image.fromarray(image).resize((1024, 2048))  # 将拼接后的numpy数组转换为图像对象,并调整大小为1024x2048像素
image  # 输出最终生成的图像对象,用于显示图像

2.2 代码结构

2.2.1 安装和卸载依赖包

        使用 !pip 命令来安装或卸载 Python 包。包括:

   (1)simple-aesthetics-predictor, data-juicer, peft, lightning, pandas, torchvision, 和   DiffSynth-Studio 的安装。

        (2)卸载 pytorch-lightning(使用 -y 自动确认卸载)。

2.2.2 加载数据集

        使用 ModelScope 的 MsDataset 类加载名为 AI-ModelScope/lowres_anime 的数据集,并指定子集名称为 default 和分割为 train,缓存目录设置为 /mnt/workspace/kolors/data

2.2.3 数据预处理

        (1)将数据集中的图像转换为 RGB 模式,并保存到指定目录。

        (2)创建包含图像路径和文本描述的元数据文件 metadata.jsonl

        (3)编写并保存 data_juicer_config.yaml 配置文件,用于后续的数据过滤和处理。

2.2.4 使用 Data-Juicer 进行数据处理

        使用 dj-process 命令根据配置文件对数据进行过滤和处理,生成 result.jsonl 文件。

2.2.5 数据整理与训练

        (1)读取 result.jsonl 文件中的数据,并将其转换为 Pandas DataFrame,然后保存为 CSV 文件,并且将图片保存到./data/lora_dataset_processed/train文件夹下。

        (2)下载模型download_models(["Kolors", "SDXL-vae-fp16-fix"])

        (3)在前面模型的基础上,执行Lora微调训练

        (4)加载微调后的模型

2.2.6  图像生成

        (1)设置正向提示词,反向提示词,执行次数,图片尺寸

        (2)设置随机种子,控制图片是否可以重复生成,并将图像保存为 .jpg 文件。

2.2.7  合并图像

        最后,将生成的多个图像合并成一个大图像,并调整大小。

        整个流程涵盖了从数据加载、预处理、特征提取、模型预测到图像生成等多个方面。每一部分都有其特定的功能,共同构成了一个完整的二次元图像处理和生成的工作流。

3. 下一步

        通过任务2的打卡,学习了代码内容与相关理论。若要有更深、更熟悉的理解,还需要更多的时间。另外,使用通义千问进行学习或查询,目前可以有效节省搜索时间,提高效率。

  • 14
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: CocosCreator是一款功能强大的游戏开发引擎,而塔游戏源码则是指使用CocosCreator开发的一款塔类游戏的源代码。 CocosCreator塔游戏源码通常包含游戏的各个模块,包括角色控制、战斗系统、地图生成以及游戏UI等。在这个源码中,开发者可以看到一套完整的塔游戏框架和逻辑。 角色控制是塔游戏源码中的重要部分。开发者可以看到玩家角色的移动、攻击以及技能释放等代码。通过阅读源码,开发者可以了解到游戏角色的行为逻辑,比如怪物移动的规则、装备系统的实现等。 另外,战斗系统是塔游戏源码中的关键内容。开发者可以通过查看源码,了解到游戏的攻击和防御计算方式、技能释放和效果表现等细节。这对于学习游戏战斗系统的设计与实现非常有帮助。 地图生成也是源码中的一个重要模块。通过阅读源码,开发者可以了解到地图生成的算法、随机事件的处理、宝箱、商店等游戏元素的放置和生成等细节。 游戏的UI设计也是塔游戏源码中不可缺少的一部分。开发者可以通过查看源码,了解到游戏UI的布局、按钮点击事件的处理、弹窗的实现等细节。 总之,通过研究CocosCreator塔游戏源码,开发者可以学习到游戏开发中常用的算法和设计思路,同时也可以培养自己的开发能力和创造力。在学习和借鉴源码的基础上,开发者还可以根据自身需求进行二次开发和优化,创作出属于自己的塔游戏作品。 ### 回答2: CocosCreator塔游戏源码是指使用CocosCreator开发的塔类游戏的程序代码。CocosCreator是一款基于Javascript的游戏开发引擎,通过它可以轻松创建多平台的游戏。 塔游戏源码通常包含了游戏的一些基本组成部分,如场景、角色、道具、怪物等。它们通过CocosCreator的节点和组件系统进行组织和管理。在源码中,开发者可以了解到游戏的逻辑、界面设计以及各个功能模块的实现方式。 通过使用CocosCreator塔游戏源码,开发者可以学习到如何实现一个完整的塔游戏。他们可以了解到游戏场景的建,通过编辑器创建地图和设置场景元素。他们可以学习到如何处理游戏角色的移动、攻击和受伤等操作,并实现相应的动画效果。另外,他们还可以了解到如何处理游戏道具的使用和怪物的生成与AI行为等。 塔游戏源码可以帮助开发者迅速上手游戏开发,节省大量的开发时间。通过对源码的学习和理解,开发者可以根据自己的需要进行二次开发和扩展,实现独具创意的塔游戏。 ### 回答3: CocosCreator塔游戏源码是基于CocosCreator游戏引擎开发的一种塔类游戏的代码。塔游戏是一种以策略和冒险为主题的角色扮演游戏,玩家需要在迷宫中探索、寻找宝物、打败敌人,最终达到最深层并击败最终BOSS。 CocosCreator塔游戏源码包含了游戏的基本逻辑、界面设计、角色控制、敌人AI、道具系统等各个方面的代码实现。通过阅读源码,我们可以了解到游戏是如何实现地图的生成与呈现、角色的移动和战斗、敌人的行为规则、道具的获取和使用等功能。同时,源码还提供了一些基本的游戏美术资源,如角色、地图瓷砖、敌人等,可以用于快速建游戏。 在实际使用源码的时候,我们可以根据自己的需求进行修改和扩展,比如添加新的关卡、设计新的敌人、增加新的道具等。同时,我们也可以根据源码学习到CocosCreator游戏开发的一些基本技巧与规范,例如场景管理、碰撞检测、UI设计等。 总之,CocosCreator塔游戏源码是一个可以让我们了解和学习塔类游戏开发的实际案例,可以通过对源码的学习和修改,快速建自己的游戏项目,并且还可以帮助我们掌握CocosCreator游戏引擎的使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值