matlab/Simulink与控制系统仿真,作者王正林,例5-18,P137,综合实例
clc;clear all
num1 = [20]; %传递函数的分子
den1 = [1 2 0]; %传递函数的分母
sys1 = tf(num1,den1); %二阶系统的传递函数
num2 = [0.1 0]; %传递函数的分子
den2 = [0 1]; %传递函数的分母
sys2 = tf(num2,den2); %二阶系统的传递函数
sys_inner = feedback(sys1, sys2); %内环反馈的传递函数
sys_outer = feedback(sys_inner, 1); %外环反馈的传递函数
% 20
% --------------
% s^2 + 4 s + 20
%进行稳定性分析
den = [1 4 20]; %分母
roots(den) %求闭环系统特征多项式的根
figure(1)
pzmap(sys_outer); %绘制系统零极点图
grid on;
%系统特征根均有负实部,因此闭环系统是稳定的
%求阶跃响应
num = [20];
den = [1 4 20]; %分母
[y,t,x] = step(num,den) %计算闭环系统的阶跃响应
figure(2)
plot(x,y)
grid on
%分析系统的响应特性
%计算系统的超调量
y_stable =1; %阶跃响应的稳态值
max_response = max(y); %闭环系统阶跃响应的最大值
sigma = (max(max_response-y_stable))/y_stable %阶跃响应的超调量
本文通过MATLAB/Simulink深入讲解了控制系统仿真的实际应用,以作者王正林的例5-18为例,详细展示了如何利用该工具进行稳定性分析,帮助读者掌握这一关键技能。
最低0.47元/天 解锁文章
2155

被折叠的 条评论
为什么被折叠?



