matlab:分析控制系统稳定性综合实例

本文通过MATLAB/Simulink深入讲解了控制系统仿真的实际应用,以作者王正林的例5-18为例,详细展示了如何利用该工具进行稳定性分析,帮助读者掌握这一关键技能。
摘要由CSDN通过智能技术生成

matlab/Simulink与控制系统仿真,作者王正林,例5-18,P137,综合实例

clc;clear all
num1 = [20];        %传递函数的分子
den1 = [1 2 0];     %传递函数的分母
sys1 = tf(num1,den1);   %二阶系统的传递函数
num2 = [0.1 0];        %传递函数的分子
den2 = [0 1];     %传递函数的分母
sys2 = tf(num2,den2);   %二阶系统的传递函数
sys_inner = feedback(sys1, sys2);   %内环反馈的传递函数
sys_outer = feedback(sys_inner, 1);   %外环反馈的传递函数
%       20
%   --------------
%   s^2 + 4 s + 20
%进行稳定性分析
den = [1 4 20];         %分母
roots(den)              %求闭环系统特征多项式的根
figure(1) 
pzmap(sys_outer);       %绘制系统零极点图
grid on;
%系统特征根均有负实部,因此闭环系统是稳定的
%求阶跃响应
num = [20];
den = [1 4 20];         %分母
[y,t,x] = step(num,den) %计算闭环系统的阶跃响应
figure(2) 
plot(x,y)
grid on

%分析系统的响应特性
%计算系统的超调量
y_stable =1;            %阶跃响应的稳态值
max_response = max(y);  %闭环系统阶跃响应的最大值
sigma = (max(max_response-y_stable))/y_stable %阶跃响应的超调量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值