问题描述
很久以前,T王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。
为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。
J是T国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。他有一个钱袋,用于存放往来城市间的路费。
聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。
J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?输入格式
输入的第一行包含一个整数n,表示包括首都在内的T王国的城市数
城市从1开始依次编号,1号城市为首都。
接下来n-1行,描述T国的高速路(T国的高速路一定是n-1条)
每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。输出格式
输出一个整数,表示大臣J最多花费的路费是多少。样例输入1
5
1 2 2
1 3 1
2 4 5
2 5 4
样例输出1
135
输出格式
大臣J从城市4到城市5要花费135的路费。
题解:
这道题很容易,利用dfs求出某个城市到另一个城市的最大路径即可,然后利用路费的计算方法,算出路费输出即可。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <cstring>
#include <string>
#include <algorithm>
#include <vector>
#include <deque>
#include <list>
#include <utility>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <bitset>
#include <iterator>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double E = exp(1.0);
const int MOD = 1e9+7;
const int MAX = 7010+5;
int n;
int p,q,d;
int maxV = -inf;
// 邻接矩阵
int flag[MAX];
int g[MAX][MAX];
void dfs(int s,int sum)
{
//cout << "当前点:" << s << " " << "当前路径值:" << sum << endl;
if(sum > maxV)
{
maxV = sum;
}
for(int j = 1; j <= n; j++)
{
if(g[s][j] != -1 && !flag[j])
{
flag[j] = 1;
dfs(j,sum+g[s][j]);
flag[j] = 0;
}
}
}
int main()
{
/*
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
*/
cin >> n;
memset(g,-1,sizeof(g));
for(int i = 1; i <= n-1; i++)
{
cin >> p >> q >> d;
g[p][q] = g[q][p] = d;
}
for(int i = 1; i <= n; i++)
{
memset(flag,0,sizeof(flag));
flag[i] = 1;
//cout << "起点:" << i << endl;
dfs(i,0);
//cout << endl;
}
//cout << maxV << endl;
int sum = 0;
for(int x = 1; x <= maxV; x++)
{
sum += 10+x;
}
cout << sum << endl;
return 0;
}

被折叠的 条评论
为什么被折叠?



