枉我细细打
一把辛酸泪
jzoj 6099 Dist
https://jzoj.net/senior/#contest/show/2690/2
首先用团来建图肯定是没问题的
第 i 个团的点权为 ki ,由此算出团之间的最短路 d(i, j) (点权floyd就好)
考虑包含点 x 的团的集合 Sx ,两点之间的最短路即dist(x, y) = min{d(i, j)|i ∈ Sx, j ∈ Sy} 。
暴力就是直接枚举 i 和 j 。。
我们考虑一条d(i, j)对答案的贡献
如果他想有贡献,那么比他短的所有d(i, k) 都不在Sy中
于是我们只需要预处理:一些点必须没有,一个点必须有,其他点可有可无的方案数
这个可以用类似子集和的方法预处理得到
我们枚举点 x ,把所有团按照离 Sx 从小到大的距离加入,答案d(i, j)*预处理方案数
PS:
哇啊啊啊啊什么鬼
C++白学了
数组竟然会影响时间。
取值问题是什么鬼
反正小的那一维要开在前面,不然真的很慢
大数组不要开在一起
调一晚上就是这个东西。
呵呵
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<queue>
#define LL long long
using namespace std;
const int MAXN=1e5+5;
int n,m,c[20],bel[MAXN];
bitset<MAXN> is[20];
LL dis[20][20],ans,f[20][1<<18],d[20];
int sum[1<<18],id[20];
void read(int &x){
x=0;char c=getchar();
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
}
void floyd(){
memset(dis,0x3f,sizeof(dis));
for(int i=1;i<=m;i++) dis[i][i]=c[i];
for(int i=1;i<=m;i++)for(int j=i+1;j<=m;j++)
if((is[i]&is[j]).count()) dis[i][j]=dis[j][i]=c[i]+c[j];
for(int k=1;k<=m;k++)for(int i=1;i<=m;i++)for(int j=1;j<=m;j++){
LL now=dis[i][k]+dis[k][j];
if(k!=i&&k!=j) now-=c[k];
dis[i][j]=min(dis[i][j],now);
}
}
bool comp(int a,int b){
return d[a]<d[b];
}
int main(){
freopen("dist.in","r",stdin);
freopen("dist.out","w",stdout);
read(n),read(m);
int lim=(1<<m)-1;
for(int i=1,k;i<=m;i++){
read(c[i]),read(k);
for(int j=1,x;j<=k;j++) read(x),bel[x]|=1<<i-1,is[i][x]=1;
}
floyd();
for(int i=1;i<=n;i++) sum[bel[i]]++;
for(int i=1;i<=m;i++){
for(int s=0;s<=lim;s++) if(s&(1<<i-1)) f[i][s]=sum[s];
for(int j=1;j<=m;j++) for(int s=0;s<=lim;s++)
if(s&(1<<j-1)) f[i][s]+=f[i][s^(1<<j-1)];
}
for(int i=1;i<=m;i++) id[i]=i;
for(int i=1;i<=n;i++){
memset(d,0x3f,sizeof(d));
for(int j=1;j<=m;j++) if(bel[i]&(1<<j-1))
for(int k=1;k<=m;k++) d[k]=min(d[k],dis[j][k]);
sort(id+1,id+m+1,comp);
for(int j=1,s=0;j<=m;s|=1<<id[j++]-1) ans+=f[id[j]][lim^s]*d[id[j]];
ans-=d[id[1]];
}
cout<<ans/2;
return 0;
}
2586

被折叠的 条评论
为什么被折叠?



