Raster 05: Raster Time Series Data in R

此博客展示了如何使用R语言的pacman、raster和rgdal包来处理NEON Landsat数据。作者首先设置工作目录,然后列出并加载指定路径下的NDVI文件,创建一个堆栈,并查看其坐标参考系统和分辨率。接着,绘制了NDVI时间序列图,并创建了每个NDVI栅格的直方图。最后,展示了一些特定日期的RGB图像,并通过循环遍历所有RGB图像进行显示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

library(pacman)
p_load(raster, rgdal)
wd <- "G:/Rdata/neon_data/NEONDSLandsatNDVI/NEON-DS-Landsat-NDVI/"
setwd(wd)

#create list of NDVI file paths
#assign path to object = cleaner code
NDVI_HARV_path <- paste0(wd, "HARV/2011/NDVI")
all_NDVI_HARV <- list.files(NDVI_HARV_path,
                            full.names = T,
                            pattern = ".tif$")
all_NDVI_HARV
# [1] "G:/Rdata/neon_data/NEONDSLandsatNDVI/NEON-DS-Landsat-NDVI/HARV/2011/NDVI/005_HARV_ndvi_crop.tif"
# [2] "G:/Rdata/neon_data/NEONDSLandsatNDVI/NEON-DS-Landsat-NDVI/HARV/2011/NDVI/037_HARV_ndvi_crop.tif"
# [3] "G:/Rdata/neon_data/NEONDSLandsatNDVI/NEON-DS-Landsat-NDVI/HARV/2011/NDVI/085_HARV_ndvi_crop.tif"
# [4] "G:/Rdata/neon_data/NEONDSLandsatNDVI/NEON-DS-Landsat-NDVI/HARV/2011/NDVI/133_HARV_ndvi_crop.tif"
# [5] "G:/Rdata/neon_data/NEONDSLandsatNDVI/NEON-DS-Landsat-NDVI/HARV/2011/NDVI/181_HARV_ndvi_crop.tif"
# [6] "G:/Rdata/neon_data/NEONDSLandsatNDVI/NEON-DS-Landsat-NDVI/HARV/2011/NDVI/197_HARV_ndvi_crop.tif"
# [7] "G:/Rdata/neon_data/NEONDSLandsatNDVI/NEON-DS-Landsat-NDVI/HARV/2011/NDVI/213_HARV_ndvi_crop.tif"
# [8] "G:/Rdata/neon_data/NEONDSLandsatNDVI/NEON-DS-Landsat-NDVI/HARV/2011/NDVI/229_HARV_ndvi_crop.tif"
# [9] "G:/Rdata/neon_data/NEONDSLandsatNDVI/NEON-DS-Landsat-NDVI/HARV/2011/NDVI/245_HARV_ndvi_crop.tif"
# [10] "G:/Rdata/neon_data/NEONDSLandsatNDVI/NEON-DS-Landsat-NDVI/HARV/2011/NDVI/261_HARV_ndvi_crop.tif"
# [11] "G:/Rdata/neon_data/NEONDSLandsatNDVI/NEON-DS-Landsat-NDVI/HARV/2011/NDVI/277_HARV_ndvi_crop.tif"
# [12] "G:/Rdata/neon_data/NEONDSLandsatNDVI/NEON-DS-Landsat-NDVI/HARV/2011/NDVI/293_HARV_ndvi_crop.tif"
# [13] "G:/Rdata/neon_data/NEONDSLandsatNDVI/NEON-DS-Landsat-NDVI/HARV/2011/NDVI/309_HARV_ndvi_crop.tif"

NDVI_HARV_stack <- stack(all_NDVI_HARV)
object.size(NDVI_HARV_stack)
# 193304 bytes

#view crs of raster
crs(NDVI_HARV_stack)
# CRS arguments:
  # +proj=utm +zone=19 +ellps=WGS84 +units=m +no_defs

res(NDVI_HARV_stack)
# Plotting Time Series Data
plot(NDVI_HARV_stack,
     zlim = c(1500,10000),
     nc = 4  #每行图的个数
     )

在这里插入图片描述

NDVI_HARV_stack <- NDVI_HARV_stack/10000
plot(NDVI_HARV_stack,
     zlim = c(.15,1),
     nc = 4)

在这里插入图片描述

#create histogram of each raster
hist(NDVI_HARV_stack,
     xlim = c(0, 1))

在这里插入图片描述

#open up some images
RGB_277 <- 
  stack(paste0(wd, "HARV/2011/RGB/277_HARV_landRGB.tif"))
RGB_293 <-
  stack(paste0(wd, "HARV/2011/RGB/293_HARV_landRGB.tif"))
RGB_133 <-
  stack(paste0(wd, "HARV/2011/RGB/133_HARV_landRGB.tif"))
RGB_197 <-
  stack(paste0(wd, "HARV/2011/RGB/197_HARV_landRGB.tif"))
par(mfrow=c(2,2))
plotRGB(RGB_277)
plotRGB(RGB_293)
plotRGB(RGB_133,stretch="lin")
plotRGB(RGB_197,stretch="lin")

在这里插入图片描述

#create a layout
par(mfrow=c(4,4))
#Super efficient code-plot using a loop
RGB_HARV_allCropped <- list.files("HARV/2011/RGB",
                                  full.names = T,
                                  pattern = ".tif$")

for(aFile in RGB_HARV_allCropped){
  RGB.stack <- stack(aFile)
  plotRGB(RGB.stack,stretch = "lin")
}

在这里插入图片描述

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值