7-50 畅通工程之局部最小花费问题 (35 分)

本文介绍如何使用Prim算法解决某地区‘畅通工程’中的最小花费问题,即找出连接所有城镇的最低成本快速道路网络。文章提供输入输出格式说明、输入输出样例,并详细解释了Prim算法的原理,最后给出了算法的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的快速道路相连,只要互相间接通过快速路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建快速路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全地区畅通需要的最低成本。

输入格式:

输入的第一行给出村庄数目N (1≤N≤100);随后的N(N−1)/2行对应村庄间道路的成本及修建状态:每行给出4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态 — 1表示已建,0表示未建。

输出格式:

输出全省畅通需要的最低成本。

输入样例:

4
1 2 1 1
1 3 4 0
1 4 1 1
2 3 3 0
2 4 2 1
3 4 5 0

输出样例:

3

Prim算法描述

  • 初始化lowcost数组,数组下标代表结点序号,存储内容是对应结点和连通集合相连的边的最小权值
  • (lowcost数组的作用)
  1. 区分连通顶点集合和未入连通顶点集合的顶点集合
  2. 记录对应结点和连通集合相连的边的最小权值(Dijkstra算法对应的是到源点的最短距离)
  • loop(直到所有顶点进入连通集合){
  1. 在lowcost数组中找到最小权值的边和其对应结点
  2. 将该结点并入连通集(一般操作为lowcost[ MinWeighIndex ] = 0)
  3. 根据此结点所连的边,更新lowcost数组(顶点MinWeighIndex所连的边(MinWeighIndex,k)可能小于lowcost[ k ])
    }

代码

#include<iostream>
#define MAXVILLAGES 103
#define MAXWEIGH 0x3f3f3f3f
using namespace std;

int N,v1,v2,cost,status;
int G[MAXVILLAGES][MAXVILLAGES];
int lowcost[MAXVILLAGES]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值