大模型AWQ量化Qwen模型和推理实战教程
随着深度学习技术的发展,大规模语言模型(LLMs)因其强大的自然语言理解和生成能力而受到广泛关注。然而,这些模型通常参数量巨大,导致在实际部署过程中面临计算资源消耗高、推理延迟长等问题。为了克服这些挑战,模型量化技术应运而生,它通过减少模型权重表示的精度来降低模型的存储和计算成本,同时尽量保持模型的性能不变。为什么需要进行模型量化?提高效率:量化可以显著减少模型的存储需求和计算量,从而加快推理速度,这对于资源受限的设备尤为重要。降低成本:通过减少对高性能硬件的需求,量化有助于降低模型部署的成本。























