矩阵实验:图形图像处理

 


矩阵

在线性代数里,用的最多的概念是【矩阵】。

一个具体的矩阵:


一个抽象的矩阵:

矩阵,是把数字按照横竖排起来。

  • 您看上图,前一个是 3355 列 (353*5),后一个是 3344 列 (343*4)。

 
来源:向量的扩展,向量是横着的一排数字,每个数字代表一个维度的分量。

  • 比方说,学生的考试科目,是有 NN 个维度。

    那在年纪成绩评比时,通常是按所有维度算的 -> V1=()V1 = (语文、数学、英语、理科、文科)

    而评比单科王是按一个维度算的 -> V2=(     ...)V2 = (语文 ~或~ 数学 ~或~ 英语~ 或...)

    还有一些可能只是按基础算 -> V3=()V3 = (语文、数学、英语)

    V3=(8,9,7)V3 = (8, 9, 7),可以用来计算和某个候选人的相似性

    每一个评比的要求都是一个向量,而又有这么多评比,所以就有了 V1V2......VnV1、V2、......、Vn

    这么多向量如果把它们放在一起,该怎么排列呢?


    如同所示,这种把向量按照横竖排起来的摆放方式,是很自然的结果,只不过数学家给它取了一个名字:矩阵,并且发现了一系列相应的计算

所以说,矩阵就是把向量按照横竖排起来的摆放方式而得来的,矩阵不是原因,而是结果,矩阵产生的原因就是向量的扩展。

 

作用,是将以前的单个计算(俩个元素的加减乘除)变成了批处理(俩个矩阵的加减乘除)。

如:

  • 俩个元素之间的计算:34=123 * 4 = 12
  • 俩个矩阵之间的批处理:(125346)(123456)=(113223445566)=(166162536)\begin{pmatrix} 1 &2 &5 \\ 3 &4 &6 \\ \end{pmatrix}*\begin{pmatrix} 1 &2 \\ 3 &4 \\ 5 &6 \end{pmatrix}=\begin{pmatrix} 1*1 &3*2 \\ 2*3 &4*4 \\ 5*5 &6*6 \end{pmatrix} = \begin{pmatrix} 1 &6 \\ 6 &16 \\ 25 &36 \end{pmatrix}

正是这种计算方式,将以前的单个计算(俩个元素的加减乘除)变成了批处理(俩个矩阵的加减乘除)。

这种批处理的计算,与计算机搭配起来,简直是绝配 — 所以,线性代数对于我们来说,生活和工作都能用上。

 
运算:矩阵加法、矩阵数乘、矩阵乘法。

  • 矩阵加法:[123456]+[111111]=[234567]\begin{bmatrix} 1 & 2 &3 \\ 4&5 &6 \end{bmatrix} + \begin{bmatrix} 1 & 1 &1 \\ 1& 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 &4 \\ 5&6 &7 \end{bmatrix},前提是俩个相加的矩阵的行列相同
     

  • 矩阵数乘:n[123456]=[n2n3n4n5n6n]n*\begin{bmatrix} 1 & 2 &3 \\ 4&5 &6 \end{bmatrix}=\begin{bmatrix} n & 2n &3n \\ 4n&5n &6n \end{bmatrix}
     

  • 矩阵乘法:[123456789101112][271236]=[12+21+3317+22+3642+51+6347+52+6672+81+9377+82+96102+111+123107+112+126]\begin{bmatrix} 1 & 2& 3\\ 4 & 5 & 6\\ 7& 8 & 9\\ 10&11 &12 \end{bmatrix}*\begin{bmatrix} 2 & 7\\ 1& 2\\ 3&6 \end{bmatrix} = \begin{bmatrix} 1*2+2*1+3*3 &1*7+2*2+3*6 \\ 4*2+5*1+6*3 &4*7+5*2+6*6 \\ 7*2+8*1+9*3 &7*7+8*2+9*6 \\ 10*2+11*1+12*3 &10*7+11*2+12*6 \end{bmatrix}

    第一个矩阵的形状是 434*3,第二个矩阵的形状是 323*2 ,俩俩相乘的矩阵是 424*2,中间的 33 被划掉了 ---- 因此俩个矩阵相乘需要满足一个条件,乘号前的矩阵的 列数 要等于后面矩阵的 行数

    矩阵乘法很重要吧,我在编程时经常听别人说起,况且那时候并没有学工程数学。

    1. 先确定生成矩阵的尺寸,乘号前的矩阵的 列数 要等于后面矩阵的 行数
    2. 生成矩阵的第 ii 行第 jj 列的值为:前面矩阵第 ii 行 和 后面矩阵第 jj 列的点乘/内积,就是一一对应,每个数字相乘再相加。

    矩阵乘法就 33 种情况,和数字、和向量、和矩阵 相乘。

  • 矩阵卷积(二维):矩阵BB 以某个步长在 矩阵AA 表面 滑动加权求和

    演示一下卷积过程,

    接着矩阵 BB 从矩阵 AA左上角 准备滑动,如下图:


    黄色区域的元素相乘,得到 4411相加值为 44

    假设设定的滑动步长为 11 ,开始滑动,新一轮计算,方法相同,如下图:


    继续滑动,对应位置相乘再求和得到 44,如下图:


    继续滑动,对应位置相乘再求和得到 2,如下图:


    …,最终矩阵卷积生成的矩阵,对比 矩阵AA 生成的矩阵小了一圈,如下图:


    矩阵BB (小矩阵),也被称为“卷积核”、“滤波器”;矩阵卷积也是卷积神经网络的原理。
     


工程应用:图像平滑

上面所说的矩阵卷积是二维的,因此我们以灰色图为例,彩色图是三维的。

图片是由很多 02550-255 的值排列而成,像素值越大图片就越亮;

  • 如果像素是 00,那像素即黑色;
  • 如果像素是 255255,那像素即白色;

而矩阵正好有行、列,我们可以把图片转为矩阵,通过操控矩阵来改变图片。

图片平滑让一张清晰的图片变模糊

因为图片的像素值反应了一个图片的亮度,如果我们把图片中的像素值和周围的像素值相似,那整个图片的色调就差不多,也变模糊了。

而图片平滑的过程和矩阵卷积的过程是一样的,最核心的地方就是设计卷积核

图像平滑算法:

  1. 设计一个卷积核,使得图像矩阵的每一个像素值尽可能的与周围的像素值接近,这张图片每部分就会差不多;
  2. 积核尺寸、滑动步长、周边范围等超参数设计,以需求而定;
  3. 需要考虑一个细节,矩阵卷积生成的矩阵会缩小一圈,图片也会变小一圈;解决方法是在矩阵A最外围补一圈零。
# 运行:在命令行输入 python 当前源文件.py
import numpy as np
from PIL import Image                     # 图片处理模块
from scipy import signal

# 1.读取一张图片
filename = "./demo.png"
img_rgb = Image.open(filename)
img_rgb.show()

# 2.将彩色图片转为灰度图
img_gray = img_rgb.convert('L')
img_gray.show()

# 3.将灰度图转为像素矩阵
matrix = np.asarray(img_gray)
print("matrix.shape=", matrix.shape)  

# 4.定义卷积核(均值滤波器)
filter_3x3 = np.array([[ 1/9, 1/9, 1/9 ],
                       [ 1/9, 1/9, 1/9 ],
                       [ 1/9, 1/9, 1/9 ]])

print("filter_3x3=", filter_3x3.shape)      # 采用的 3*3 的过滤器
print(np.around(filter_3x3, decimals=2))   # 打印图片的像素值

# 5.开始卷积(图像平滑)
result = signal.convolve2d(matrix, filter_3x3, mode='same')
print("result.shape=", result.shape)
print(np.around(result, decimals=0))

# 6.把像素矩阵转回图片
img_rlt = Image.fromarray(result)
img_rlt.show()

读取的图片 demo.png


简单起见,转为黑白图片(二维):


调用图像平滑算法:


有些模糊了,但 3x33x3 可能不太明显,可以改为 7x77x7 看看(会更模糊)。

  • filter_3x3 改为 filter_7x7
# 7x7的,均值是 1/49
filter_7x7 = np.ones((7,7)) / (7*7)

除此之外,卷积核还可以改进,一般采用高斯分布(在保留细节方面,图片平滑效果最好),因此也称为 “高斯滤波器”。

二维高斯分布:

333*3 的 矩阵BB 中,也就是卷积核的权重不要全设置为相同的数;滤波器的设计应该随中心逐层递减。

# 7x7 高斯滤波器
gaussian_filter_7x7 = np.array([  [ 0.00000067, 0.00002292, 0.00019117, 0.00038771, 0.00019117, 0.00002292, 0.00000067],
                                  [ 0.00002292, 0.00078633, 0.00655965, 0.01330373, 0.00655965, 0.00078633, 0.00002292],
                                  [ 0.00019117, 0.00655965, 0.05472157, 0.11098164, 0.05472157, 0.00655965, 0.00019117],
                                  [ 0.00038771, 0.01330373, 0.11098164, 0.22508352, 0.11098164, 0.01330373, 0.00038771],
                                  [ 0.00019117, 0.00655965, 0.05472157, 0.11098164, 0.05472157, 0.00655965, 0.00019117],
                                  [ 0.00002292, 0.00078633, 0.00655965, 0.01330373, 0.00655965, 0.00078633, 0.00002292],
                                  [ 0.00000067, 0.00002292, 0.00019117, 0.00038771, 0.00019117, 0.00002292, 0.00000067] ])
								  # 调用的时候,将 filter_3x3 改为 gaussian_filter_7x7。

除此之外,还可以实现图片的边缘检测(应用在自动驾驶的车道检测、计算机视觉基础等等)。

# 第 4 步,定义卷积核改为定义算子
sobel = np.array([[ -1, -2, -1 ],                        
                  [  0,  0,  0 ],
                  [  1,  2,  1 ]]) 

# 调用语句 result = signal.convolve2d(matrix, filter_3x3, mode='same')
result = signal.convolve2d(matrix, sobel, mode='same')

左边是原图,右边是效果图(边缘检测算法):

 


看待矩阵的四种视角:数据、系统、变换、空间

学线代时,可能比较注重具体的计算,但学完了却发现对线代的理解还是不够深刻。

一个可能的原因是,没有特别深刻的理解,我们在代数中的这些符号,比如说 矩阵AA,这个 矩阵AA 到底表示什么?

代数,是用字母代表数,但我们到底代表的是哪些数…在更加抽象的数学里,我们的代数代表的不仅仅是数,而是一个对象。

那么,代表的这个对象是什么?

这个就是我们要明确的。

看待矩阵的四种视角:

  • 数据:把矩阵看成数据,nnmm列,每一行代表一个样本,每一列代表一个特征,多用于数据科学;
  • 系统:把矩阵看成线性系统(中学的多元一次方程组),那求解那些线性方程组就可以用矩阵运算,多用于计算线性代数的线性方程组;
  • 变换:把矩阵看成对向量的一个函数,或者说是一种变换,因为一个矩阵和一个向量相乘,得到结果依然是向量,可以把矩阵看成输入一个向量,输出一个向量的函数,多用于图形学的图像图形的变化;
  • 空间:把矩阵看成一个空间,这样看一个矩阵乘一个向量,就是向量在矩阵所表示的空间中所对应的位置是哪里,多用于线性代数的向量空间。

 


线性变换

矩阵可不仅仅是只能处理图片的数字表格,试着换一种角度看矩阵:变换。

  • 矩阵乘法:AB=[1111][11]=[02]A*B=\begin{bmatrix} 1 & -1\\ 1& 1 \end{bmatrix}*\begin{bmatrix} 1\\ 1 \end{bmatrix} = \begin{bmatrix} 0\\ 2 \end{bmatrix},画在几何。


B向量B(红色) 经过 A矩阵A 得到 另一个向量(绿色),A矩阵A 如同一个函数,一个向量输入进去,会输出另一个向量。

只不过,在线性代数里,我们称 A矩阵A 为一种变换,即把一个向量(或矩阵)变成另一个变量(或矩阵)。

若我们把矩阵看做一个变换,图形变换就会十分方便。

图形变换:图形的缩放、旋转、仿射等等,也用于游戏开发、动漫制作等等。

 


工程应用:图形变化

或许您应该有一个疑问,矩阵,是怎样实现图形变换的 ???

图形的变化:

  • 图形旋转
  • 图形平移
  • 图形放大
  • 图形缩小
  • 图形翻转
  • 图形剪切(正体 变斜体
  • … …

比如,这个是怎么做到的:


经过旋转:


先考虑一个小问题吧,怎么使得一个图形绕 yy 轴左右翻转 ?


其实,黄色的梯形是由 44 个点组成,经历 44 个点的坐标,也就是 44 个列向量。

首先,我们让 (x1,y1)(x_{1},y_{1}) 翻转,翻转后也就是 (x1,y1)(-x_{1},y_{1})

现在我们改为以矩阵的形式翻转:A[x1y1]=[x1y1]A*\begin{bmatrix} x_{1}\\ y_{1} \end{bmatrix}=\begin{bmatrix} -x_{1}\\ y_{1} \end{bmatrix}

我们需要做的就是找到一个能使其转换完成的 A矩阵A,因为输入的矩阵和输出的矩阵都是同行同列(2行, 1列),根据矩阵乘法的要求,A矩阵A 就必须是 2行, 2列。

得到一个式子:

  • A=[abcd],A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}, 则有:{ax1+by1=x1cx1+dy1=y1\begin{cases} ax_{1} +by_{1}&= -x_{1}\\ cx_{1}+dy_{1}&= y_{1} \end{cases}

我们确定好 a,b,c,da,b,c,d 四个系数的值,通过比对等式俩边的系数即可,

  • 因为 x1=ax1-x_{1} = ax_{1} ,推出 a=1, b=0a = -1, ~b=0
  • 因为 y1=dy1y_{1}=dy_{1}, 推出 c=0, d=1c=0,~d=1

所以,矩阵 A=[1001]A =\begin{bmatrix} -1 & 0 \\ 0& 1 \end{bmatrix}

可这个翻转计算只是针对 (x1,y1)(x_{1},y_{1}),为了提高计算效率(批处理),我们把 x1xnx_{1}\cdots x_{n} 的点化为列向量后,排成一个矩阵。

矩阵AA 再和 排成的矩阵 计算即可:

  • [1001][x1x2x3x4y1y2y3y4]=[x1x2x3x4y1y2y3y4]\begin{bmatrix} -1 &0 \\ 0& 1 \end{bmatrix}*\begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4} \end{bmatrix}=\begin{bmatrix} -x_{1} & -x_{2} & -x_{3} & -x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4} \end{bmatrix}

以上是图形的左右翻转(绕 yy 轴)。


图形的上下翻转(绕 xx 轴)原理也相同。

  • [1001][x1x2x3x4y1y2y3y4]=[x1x2x3x4y1y2y3y4]\begin{bmatrix} -1 &0 \\ 0& 1 \end{bmatrix}*\begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4} \end{bmatrix}=\begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ -y_{1} & -y_{2} & -y_{3} & -y_{4} \end{bmatrix}

 


线性变换,也可以实现图形的水平剪切。

剪切:把 正体字 变成 斜体字,就是一个剪切。


图形的水平剪切如上图,纵坐标不变,横坐标运动。

结合矩阵:[abcd][xy]=[x+kyy]\begin{bmatrix} a &b \\ c & d \end{bmatrix}*\begin{bmatrix} x\\y \end{bmatrix}=\begin{bmatrix} x+ky\\ y \end{bmatrix},有一个控制系数 kk.

根据矩阵乘法 ,令 A=[abcd],A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}, 则有:{ax+by=x+kycx+dy=y\begin{cases} ax+by&= x+ky\\ cx+dy&= y \end{cases}

通过对比系数,[1k01][xy]=[x+kyy]\begin{bmatrix} 1 &k \\ 0 & 1 \end{bmatrix}*\begin{bmatrix} x \\ y \end{bmatrix}= \begin{bmatrix} x+ky \\ y \end{bmatrix},当 k>0k>0 时,往右剪切;当 k<0k<0 时,往左剪切。


图形的竖直剪切如下图,纵坐标运动,横坐标不变。


 
变换矩阵:[1k01][xy]=[xkx+y]\begin{bmatrix} 1 &k \\ 0 & 1 \end{bmatrix}*\begin{bmatrix} x \\ y \end{bmatrix}= \begin{bmatrix} x \\ kx+y \end{bmatrix},注意 kk 的值,变换的方向不一样。

 


完整代码:

# 运行:在命令行输入 python 当前源文件.py
import numpy as np
import matplotlib.pyplot as plt

# 1.定义变换矩阵A,用于图形平移(竖直平移)
A = np.array([[1,0],[0,-1]])

# 1.定义变换矩阵A,用于图形剪切
# k = -0.8
# A = np.array([[1,0],[k,1]])

# 1.定义变换矩阵A,图形旋转
# theta = -(3.14/4)
# A = np.array([[np.cos(theta),np.sin(theta)],[-np.sin(theta),np.cos(theta)]])

# 1.定义变换矩阵A,图形整体放大 1 倍
# A = np.array([[2,0],[0,-2]])  

# 1.定义变换矩阵A,图形整体缩小 0.75 倍
# A = np.array([[0.5,0],[0,0.5]])  

# 2. 定义输入矩阵(即输入图形)
B = np.array([[0, 1, 1, 0, 0],[1, 1, 0, 0, 1]])

# 3. 计算输出矩阵(矩阵乘法)
Y = np.dot(A,B)

# 4. 绘制图形
plt.axis([-3,3,-3,3])
plt.axvline(x=0, color='#A9A9A9')
plt.axhline(y=0, color='#A9A9A9')
plt.grid(True)
plt.plot(B[0],B[1],'-yo',lw=2)  # 绘制输入图形
plt.plot(Y[0],Y[1],'-go',lw=2)  # 绘制输入图形
plt.show()

具体用法,请往下看。


图形平移

  • 竖直平移的变换矩阵是:A=[1001]A = \begin{bmatrix} 1 &0 \\ 0& -1 \end{bmatrix},水平平移的变换矩阵是:A=[1001]A = \begin{bmatrix} -1 &0 \\ 0& 1 \end{bmatrix}
# 1.定义变换矩阵A,用于图形平移(竖直平移)
A = np.array([[1,0],[0,-1]])


 


图形剪切

  • 水平剪切的变换矩阵是:A=[1k01]A = \begin{bmatrix} 1 &k \\ 0& 1 \end{bmatrix},竖直剪切的变换矩阵是:A=[10k1]A = \begin{bmatrix} 1 &0 \\ k& 1 \end{bmatrix}, 会影响方向。
# 1.定义变换矩阵A,用于图形剪切
k = -0.8
A = np.array([[1,0],[k,1]])


 


图形放大

水平放大的矩阵是:A=[1002]A = \begin{bmatrix} 1 &0 \\ 0& 2 \end{bmatrix},竖直放大的变换矩阵是:A=[2001]A = \begin{bmatrix} 2 &0 \\ 0& 1 \end{bmatrix}

# 1.定义变换矩阵A,图形整体放大 1 倍
A = np.array([[2,0],[0,2]])  


图形缩小同理。

 


图形旋转

  • 逆时针旋转的变换矩阵是:A=[cosθsinθsinθcosθ](θ<0)A = \begin{bmatrix} cos\theta &sin\theta \\ -sin\theta & cos\theta \end{bmatrix}(\theta <0),顺时针旋转的变换矩阵是:A=[cosθsinθsinθcosθ](θ>0)A = \begin{bmatrix} cos\theta &sin\theta \\ -sin\theta & cos\theta \end{bmatrix}(\theta >0)
# 1.定义变换矩阵A,图形旋转
theta = -(3.14/4)
A = np.array([[np.cos(theta),np.sin(theta)],[-np.sin(theta),np.cos(theta)]])


旋转的角度最复杂,我们可能不太清楚这个角度是怎么来的。
 


矩阵变化的推导

我们推导一下,图形旋转的变化过程。


推导的前置知识:高中的三角函数。

不一定要每一步都弄明白,但要知道我们可以把矩阵看成一种对向量的变换(函数),这个很重要,理解的越深刻越好。

我们看最简单的情况,如下图。


蓝色的向量旋转 θ\theta 度角得到红线 ,如果我们设这个变换的矩阵为 a,b,c,da,b,c,d,则有这样一个式子:

  • A=[abcd]A=\begin{bmatrix} a & b \\ c & d \end{bmatrix},则有:[abcd][xy]=[xy]\begin{bmatrix} a &b \\ c & d \end{bmatrix}*\begin{bmatrix} x\\y \end{bmatrix}=\begin{bmatrix} x^{'}\\ y^{'} \end{bmatrix}

因为是经过旋转得到的,因此新的坐标和原来的坐标一定是有联系的,这个联系就是角度 θ, α\theta ,~\alpha

推导过程:

  • 设向量(蓝色)的模为 LL,由三角关系式得到:cos(α)=xLcos(\alpha )=\frac{x}{L},即 L=xcos(α)L=\frac{x}{cos(\alpha )}sin(α)=yLsin(\alpha )=\frac{y}{L},即 L=ysin(α)L = \frac{y}{sin(\alpha )}
     
  • 向量(红色)由于仅有旋转没有伸缩,因此红色向量的模依然是 LLcos(αθ)=xLcos(\alpha -\theta )=\frac{x^{'}}{L},即 L=xcos(aθ)L=\frac{x^{'}}{cos(a-\theta )}sin(aθ)=yLsin(a-\theta )=\frac{y^{'}}{L},即 L=ysin(αθ)L=\frac{y^{'}}{sin(\alpha -\theta )}
     
  • x=cos(αθ)cosαxx^{'}=\frac{cos(\alpha -\theta )}{cos\alpha }x, y=sin(αθ)sinαyy^{'}=\frac{sin(\alpha -\theta )}{sin\alpha }y
     
  • [abcd][xy]=[cos(αθ)cosαxsin(αθ)sinαy]\begin{bmatrix} a & b \\ c & d \end{bmatrix}*\begin{bmatrix} x\\ y \end{bmatrix}=\begin{bmatrix} \frac{cos(\alpha -\theta )}{cos\alpha }x\\ \frac{sin(\alpha -\theta )}{sin\alpha }y \end{bmatrix},比对系数确定 a, b, c, da,~b,~c,~d
     
  • ax+by=cos(αθ)cosαx=cosαcosθ+sinαsinθcosαx=cosθx+tanαsinθx=cosθx+yxsinθx=cosθx+sinθyax+by=\frac{cos(\alpha -\theta )}{cos\alpha }x=\frac{cos\alpha* cos\theta +sin\alpha sin\theta }{cos\alpha }x=cos\theta *x+tan\alpha *sin\theta *x=cos\theta *x+\frac{y}{x}sin\theta *x=cos\theta *x+sin\theta *y,一步步化简得到最后的。
     
  • cx+dy=sin(aθ)sinαy=sinα cosθ+cosαsinθsinαy=sinθx+cosθycx+dy=\frac{sin(a-\theta )}{sin\alpha }y=\frac{sin\alpha~ cos\theta +cos\alpha sin\theta }{sin\alpha }y=-sin\theta *x+cos\theta *y
     
  • [cosθsinθsinθcosθ]\begin{bmatrix} cos\theta &sin\theta \\ -sin\theta & cos\theta \end{bmatrix},这个结果就是变换 矩阵AA 呀!!!


图形旋转角度就是这么推导过来的,在《数学女孩 4》的矩阵 — 线性变换一节,里面就有其TA图形变换的推导过程。

 


总结

第一部分,介绍了矩阵、来源、运算,工程应用是矩阵卷积,趁热打铁去搞定卷积网络吧。

第二部分,介绍了看待矩阵的四种视角,我们选的是变换,工程应用是图形图像处理。

归根结底,是函数表示变换。任意函数都是从输入到输出的变换。矩阵可以看做是向量的函数:)

这种变换,还可以扩展到三维空间,比如说电视成像、转播。

电视机成像的原理大概是,通过一把电子枪,把电子打到屏幕上:

不过对于这样的彩色图片一把电子枪是不够的:


可以把这幅图片以 红色、绿色、蓝色 为基,分为三张图片:


用三把电子枪分别把 红色RR、绿色GG、蓝色BB 的电子打到屏幕上,来呈现出彩色的画面:

电视转播则不同,信号不是以 红色RR、绿色GG、蓝色BB 的电子传过来的,而是另一个颜色空间的表示方法。

不是靠三原色 RGBRGB 传递,而是通过 YCbCrYC_bC_rYPbPrYP_bP_r 传递。

  • YCbCrYC_bC_r,采用亮度-色差来描述颜色的颜色空间
  • YPbPrYP_bP_r ,模拟视频中的明度、彩度、同步脉冲分解开来各自传送的端子。

彩色电视机背后有 YPbPrYP_bP_rYCbCrYC_bC_r 接口,完整地插入 YPbPrYP_bP_rYCbCrYC_bC_r 信号就可以看到彩色图片了:

  • 若是接入 YY,可产生黑白图像;
  • 若是再接入 Pb/CbP_b/C_bPr/CrP_r/C_r ,就会产生彩色图像。

RGBRGB 转换为 YPrPbYP_rP_bYCbCrYC_bC_r,这个过程也是矩阵函数的一个实例:

加油:)

展开阅读全文

Python数据分析与挖掘

01-08
92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: 像素格子 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值