【资料集合】图像分类与检测领域常用数据集汇总

图像分类与检测领域常用数据集汇总

 图像分类与检测领域常用数据集
数据库 图像数目 类别数目每类图像数目图像大小(pixel)数据库论文(点击即可获取论文,如果无法下载,推荐使用SCI-HUB
 MNIST60000106000

28x28

Gradient-based learning applied to document recognition
 CIFAR-1060000  10600032x32Learning multiple layers of features from tiny images
 MPEG-714007020256x256-650x600Shape descriptors for non-rigid shapes with a single closed contour
15 Scenes  448515200-400约 300x250Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
 Caltech-101 914610140-800约 300x200Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
Caltech-256 30607256>80约 300x200Caltech-256 object category dataset
 PASCAL VOC 2007 9963 2096-2008 约 470x380

The PASCAL Visual Object Classes (VOC) Challenge

 SUN397108754 397 >100约 500x300Sun database: Large-scale scene recognition from abbey to zoo
SUN2012  1687382000约 500x300Sun database: Large-scale scene recognition from abbey to zoo
 Tiny Images7900万75062 -32x3280 million tiny images: A large data set for nonparametric object and scene recognition
 ImageNet-1000120万1000-约 500x400Imagenet: A large-scale hierarchical image database
 ImageNet 1400万10万1000 约 500x400Imagenet: A large-scale hierarchical image database

 

欢迎关注公众号:一刻AI

参考文献:黄凯奇, 任伟强, 谭铁牛. 图像物体分类与检测算法综述[J]. 计算机学报, 2014, 37(6): 1225-1240.

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 目标检测数据集是计算机视觉领域中一类非常重要的数据集。它包含大量不同种类的图像,这些图像中存在需要被识别出来的目标,并且每个目标都会进行标注,以便于后续的算法训练和测试。csdn是一个比较知名的技术交流社区,提供了许多有关计算机视觉和深度学习相关的数据集,包括目标检测数据集。 csdn上的目标检测数据集包含了许多不同种类的数据集,包括COCO、PASCAL VOC、ImageNet等。COCO数据集是当前最著名的目标检测数据集之一,它包含了超过33万张高分辨率的图像,同时还提供了丰富的物体注释信息,包括80个不同类别的物体及其位置和大小等信息。PASCAL VOC数据集也是一种经典的目标检测数据集,它涵盖了20种不同类别的物体目标,提供了大量的图像和标注信息,被广泛应用于计算机视觉领域的研究和应用中。 使用csdn提供的目标检测数据集,研究者和开发人员可以利用这些数据进行算法训练和测试,并通过不断地迭代来提高算法的性能和准确性,进而应用到更加广泛的场景中,如无人驾驶、安防监控等领域。同时,对于初学者来说,这些数据集也可以用来学习基本的目标检测算法和技巧,提高自己的技能和能力。 ### 回答2: 目标检测数据集是用于训练和测试计算机视觉算法的集合。它们通常包含大量带有标记的图像,其中每个对象都已经被定位和标记。这些数据集可用于训练与目标检测相关的深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)等。 目标检测数据集的CSND是一个公开的、包含多种不同类型数据集的平台。这些数据集主要分为以下几类:检测、分割、分类、行人重识别、场景分析等。其中最受欢迎的包括PASCAL VOC,COCO,Object Detection from Video(ImageNet VID),ImageNet DET和MS COCO等。 PASCAL VOC是一个主要用于物体识别和检测数据集,提供了2007年至2012年期间收集的图像,并注释了20种常见物体的位置。COCO是COCO数据集的简称,是目前最流行的目标检测数据集之一,其包含超过328,000张图像和2.5万个对象标注,用于训练物体检测、图像分割和关键点检测模型。 ImageNet因其规模之大而备受关注,它包含超过1400万张图像和超过2万个类别标注,通常用于对图像分类和物体检测的算法进行预训练。MS COCO是一个新兴的数据集,囊括了更多有挑战性的任务,包括图像描述、姿态估计和密集预测等。 总之,目标检测数据集是深度学习计算机视觉领域中的重要资源,不同数据集包含不同的样本规模、数据质量和任务难度,可以帮助研究人员和工程师更好地了解物体检测算法的性能和应用场景。CSND作为一个公开、多样化的数据集平台,方便开发者在算法优化及模型测试期间进行使用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李是李雅普诺夫的李

欢迎关注公众号:一刻AI

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值