数据结构-线性表

一、线性表的定义

顺序表的定义

#define maxsize 100

typedef struct{

​ ElemType data[maxsize];

​ int length;

}

链表的定义

typedef struct LNode{

​ ELemType data;

​ struct LNode *next;

}LNode, *LinkList

二、线性表的增删改查

1、插入问题

顺序表:

第i节点

status ListInsert(Slits &L, int i,Elemtype e){

​ if (i<1|i>L.length+1)

​ return False;

​ if (L.length>=maxsize)

​ return False;

​ for (j = L.length; j>=i; j–){

​ data[j-1] = data[j];

​ }

​ L.data[i-1] = e;

​ L.length++;

​ return True;

}

链表:

LNode *GetElem(Linklist L, int i){

​ if (i<0) return NULL;

​ if (i==0) return L;

​ int j = 1;

​ LNode *p = L->next;

​ while(p && j<i){

​ p = p->next;

​ j++;

​ }

​ return p;

}

status Insert(LinkList &L, int i, Elemtype e){

if (L){

​ LNode *p = GetElem(L, i-1);

​ if (!p) return False;

​ s = (LNode *)malloc(sizeof(LNode));

​ s.data = e;

​ s->next = p->next;

​ p-next = s;

​ return True;

}

return False

}

2、删除问题

顺序表:

status ListDelete(Sqlist &L, int i, Elemtype &e){

​ if (i<1|| i>L.length) return False;

​ e = L.data[i-1];

​ for (int j=i; j<=L.length-1; j++){

​ L.data[i-1] = L.data[i];

​ }

​ L.length–;

​ return True;

}

链表:

LNode *GetElem(Linklist L, int i){

​ if (i<0) return NULL;

​ if (i==0) return L;

​ int j = 1;

​ LNode *p = L->next;

​ while(p && j<i){

​ p = p->next;

​ j++;

​ }

​ return p;

}

status Delete(LinkList &L, int i, Elemtype &e){

​ if (L){

​ LNode *p = GetElem(L, i-1);

​ if (!p||!p->next) return False;

​ q = p->next;

​ e = q.data;

​ p-next = q->next;

​ free(q);

​ return True;

}

return False;

}

三、注意事项

1.默认都是带头节点。如果规定是无头节点的链表,多可以使用递归的方法。

2.传入Linklist &L时,一定要判断是否为空。

3.声明变量可以不写。

4.语句后面一定要加分号。

5.验证算法时,用5节点或者3层数。

6.return True/False 类的问题,一定要用status来定义函数。

7.务必保证代码的健壮性。

status is_ture(int i){

return False;

}

四、常见方法及例题

1.双指针法

2.最值问题

删除链表中的最小值结点。

LinkList Delete_min(LinkList &L){

​ LNode *pre=L, *p = L->next;

​ LNode *pre_min=pre, *p_min = p;

​ while(!p){

​ if (p->data<p_min->data){

​ p_min = p;

​ pre_min =pre;

​ }

​ pre = p;

​ p = p->next;

​ }

​ pre_min = p_min->next;

​ free(p_min);

​ return L;

}

3.头接法

4.递归法

删除不带头结点的单链表L中所有的值为x的结点

void Delete_x(LinkList &L, ElemType x){

​ if (L==NULL) return;

​ if (L->data == x){

​ p = L;

​ L = L->next;

​ free§;

​ Delete_x(L, x);

​ }

​ else

​ Delete_x(L->next, x);

}

***5.归并/合并问题

将两个有序递增顺序表合并为一个新的有序顺序表,并由函数返回结果顺序表。

status Merge(Sqlist A, Sqlist B, Sqlist C){

​ if (A.length + B.length > C.maxsize)

​ return False;

​ i = 0, j = 0, k = 0;

​ while(i<A.length & j<B.length){

​ if (A.data[i]<=B.data[j])

​ C.data[k++] = A.data[i++];

​ else

​ C.data[k++] = B.data[j++];

​ }

​ while(i<A.length){

​ C.data[k++] = A.data[i++];

​ }

​ while(j<B.length){

​ C.data[k++] = A.data[j++];

​ }

​ C.length = k;

​ return True;

}

将两个有序递增链表合并为一个新的有序链表,并由函数返回结果链表。

status Merge(LinkList A, LinkList B, LinkList &C){

​ LNode *p = A->next;

​ LNode *q = B->next;

​ LNode *r;

​ C = A;

​ C->next = NULL;

​ free(B);

​ r = C;

​ while(p & q){

​ if (p.data<=q.data){

​ r->next = p;

​ p = p->next;

​ r= r->next;

​ }

​ else{

​ r->next = q;

​ q = q->next;

​ r= r->next;

​ }

​ }

​ r->next = NULL;

​ if § r->next = p;

​ if (q) r->next = q;

​ return True;

}

6.逆置问题

有一个线性表,采用带头节点的单链表L来存储。设计一个算法将其逆置。要求不能建立新节点,只能通过表中已有节点的重新组合来完成。

void reverse(LinkList L){

​ LNode *p = L-next, *q;

​ L->next = NULL;

​ while §{

​ q = p->next;

​ p->next = L->next;

​ L->next = p;

​ p = q;

​ }

}

7.快慢指针

判断链表中的环

status hasCycle(Linklist L){

​ if (L==NULL||L.next ==NULL) return False;

​ LinkList fast = L, low = L;

​ while (fast != Null & fast.next != NULL){

​ fast = fast.next.next;

​ low = low.next;

​ if (low == fast) return True;

​ }

​ return False;

}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值