HDU 6632 discrete logarithm problem(原根+Exgcd或Pohlig Hellman)

discrete logarithm problem

Problem Description
You are given three integers p,a,b, where p is a prime number and p−1 only has prime factors 2 and/or 3. Please find the minimum positive integer x such that ax≡b(modp).

Input
The first line contains an integer T indicating there are T tests. Each test consists of a single line containing three integers: p,a,b.

  • T≤200

  • 65537 ≤ p ≤ 1 0 18 65537≤p≤10^{18} 65537p1018

  • the prime factors of p−1 can only be 2 or 3

  • 2≤a,b≤p−1

Output
For each test, output a line containing an integer x, representing the minimum positive value such that ax≡b(modp). If there didn’t exist any such number x, please output −1.

Sample Input

6
65537 2 3
65537 2 4
65537 3 4
65537 4 4
65537 5 4
666334875701477377 2 3

Sample Output

-1
2
45056
1
36864
1957714645490451

题意
已知 p , a , b p,a,b p,a,b,求解 a x ≡ b   ( m o d    p ) a^x\equiv b\ (mod\ \ p) axb (mod  p)

题解
因为 p ≤ 1 0 18 p\leq 10^{18} p1018,而离散对数求解算法BSGS的复杂度是 p \sqrt{p} p
赛后题解说是CTF的简单算法, Pohlig Hellman。但是没学过密码学,等着看看再来补一发 Pohlig Hellman的。

补完了补完了,代码在下面,Pohlig Hellman讲解在这里,水平有限,不一定讲得清楚。
时间直接从1000+ms降到62ms,爽啊
在这里插入图片描述

回去重学了原根,然后反复研究才弄明白大佬不明不白的三言两语的题解。

该题做法是:

<1> 先求 g g g g g g p p p的原根。原根是判断所有 g p − 1 p i % p ! = 1 g^{\frac{p-1}{p_i}}\%p!=1 gpip1%p!=1,题中说了 p − 1 p-1 p1素因子只有2,3。所以判断条件就成了 g p − 1 2 % p ! = 1 g^{\frac{p-1}{2}}\%p!=1 g2p1%p!=1, g p − 1 3 % p ! = 1 g^{\frac{p-1}{3}}\%p!=1 g3p1%p!=1

<2> 求解 p − 1 = 2 k 3 t p-1=2^k3^t p1=2k3t中的 k , t k,t k,t(后面用)

<3> 求解 a = g z , b = g c a=g^z,b=g^c a=gz,b=gc中的 z , c z,c z,c。根据原根性质可以知道对于质数 p p p,其 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1,所以我们可以将 { 1 , 2 , ⋯ &ThinSpace; , p − 1 } \{1,2,\cdots,p-1\} {1,2,,p1} { g 1 , g 2 , ⋯ &ThinSpace; , g p − 1 } \{g^1,g^2,\cdots,g^{p-1}\} {g1,g2,,gp1}建立一一对应关系。也就知道存在唯一的 z , c , ( z , c ≤ p − 1 ) z,c,(z,c\leq p-1) z,c,(z,cp1)使得等式成立。
但是因为 p ≤ 1 0 18 p\leq 10^{18} p1018,无法暴力寻找 z , c z,c z,c,也无法用离散对数求解。需要其他方法(下面)

<4> 因此式子由 a x = b   ( m o d    p ) a^x=b\ (mod\ \ p) ax=b (mod  p) 转换为 g z x = g c   ( m o d    p ) g^{zx}=g^c\ (mod\ \ p) gzx=gc (mod  p)。因为<3>我们又可以将其转化为 z x = c   ( m o d    p − 1 ) zx=c\ (mod\ \ p-1) zx=c (mod  p1),这是一个单变元模线性方程,可以用exgcd求解。因为模数为素数所以方程为 z x + ( p − 1 ) y = g c d ( z , p − 1 ) zx+(p-1)y=gcd(z,p-1) zx+(p1)y=gcd(z,p1),无解输出-1,有解即可求出最小正整数解x




大佬原话说(没错,大佬口头说的题解就这么长):
对于一个数x,先判断其有没有模p平方根,没有的话就乘以原根g,再判断有没有四次方根,没有的话乘以 g 2 g^2 g2,再判断有没有八次方根,没有的话就乘以 g 4 g^4 g4。不断循环,就能找到x乘以g的几次方等于1,也就由 g p − 1 = 1 g^{p-1}=1 gp1=1知道了x等于g的几次方。

我的理解是:(表达能力实在有限。。。)
本题因为p-1只有素因子2,3, g p − 1 % p = g 2 k 3 t % p = 1 g^{p-1}\%p=g^{2^k3^t}\%p=1 gp1%p=g2k3t%p=1,所以只需要判断 g 1 , g 2 , g 2 2 , ⋯ &ThinSpace; , g 2 k 3 , g 2 k 3 2 , ⋯ &ThinSpace; , g 2 k 3 t g^1,g^2,g^{2^2},\cdots,g^{2^k3},g^{2^k3^2},\cdots,g^{2^k3^t} g1,g2,g22,,g2k3,g2k32,,g2k3t
对于 x = g k   ( m o d    p ) x=g^k\ (mod\ \ p) x=gk (mod  p),如果它没有平方根,就代表k为奇数,此时给两边乘上一个g,就成了g的偶数次,也就存在了平方根,存在平方根后,判断存不存在四次方根,如果不存在就代表 k = 2 , 6 , 10 , 14 ⋯ k=2,6,10,14\cdots k=2,6,10,14,所以乘以 g 2 g^2 g2也就存在了四次方根。后面依次继续八次方根。。。其他次方根同理,但是判断次数及判断条件会发生变化,例如:三次方根不存在则k可能会是1,2,而乘一次是k+1,所以三次方根需要多判断一次,举一个本题的例子说:对于 g 2 3 3 g^{2^33} g233,我们按顺序判断完其存在八次方根后,判断其存不存在24次方根,不存在则 k = 8 , 16 k=8,16 k=8,16(我只枚举了最小的情况),此时我们给其乘以 g 8 g^8 g8,不能一次保证存在24次方根,所以需要再判断一次。

该题因此可以通过从 2 k 3 t ~ 1 2^k3^t~1 2k3t1判断,可以确认x是g的几次方。
也就求出了<3>中需要的 z , c z,c z,c。需要注意的是全程可能两数相乘爆long long,需要快速乘

代码

#include <bits/stdc++.h>
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <queue>
#include <cmath>
#include <string>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <cmath>
#include <ctime>
using namespace std;
#define me(x,y) memset(x,y,sizeof x)
#define MIN(x,y) (x) < (y) ? (x) : (y)
#define MAX(x,y) (x) > (y) ? (x) : (y)
#define SGN(x) ((x)>0?1:((x)<0?-1:0))
#define ABS(x) ((x)>0?(x):-(x))


typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

const int maxn = 1e6;
const ll INF = 0x3f3f3f3f;
const int MOD = 1e9+7;
const int eps = 1e-8;

ll kk,tt;

ll qmul(ll a,ll b,ll p){
    a%=p,b%=p;
    ll ans=0;
    while(b){
        if(b&1) ans=(ans+a)%p;
        a=(a+a)%p;
        b>>=1;
    }
    return ans%p;
}

ll qpow(ll a,ll b,ll p){
    ll ans=1;
    while(b){
        if(b&1) ans=qmul(ans,a,p);
        a=qmul(a,a,p);
        b>>=1;
    }
    return ans;
}

bool judge(ll x,ll p){
    if(qpow(x,(p-1)/2,p)==1) return 0;
    if(qpow(x,(p-1)/3,p)==1) return 0;
    return 1;
}

void p_power(ll p){ //p-1=2^kk*3^tt 
    kk=0,tt=0;
    ll pp = p-1;
    while(pp%2 == 0){
        kk++;
        pp /= 2;
    }
    while(pp%3 == 0){
        tt++;
        pp /= 3;
    }
}

ll get_power(ll x,ll g,ll p){
    ll pp = p-1;
    ll ans=0;
    ll rec=g,po=1; //rec = g ^ po
    for(int i = 0; i < kk; ++i){
        pp /= 2;
        if(qpow(x,pp,p) != 1){
            ans += po;
            x = qmul(x,rec,p);
        }
        rec = qmul(rec,rec,p);
        po = po*2;
    }
    for(int i = 0; i < tt; ++i){
        pp /= 3;
        if(qpow(x,pp,p) != 1){
            ans += po;
            x = qmul(x,rec,p);
            if(qpow(x,pp,p) != 1){
                ans += po;
                x = qmul(x,rec,p);
            }
        }
        rec = qmul(rec,qmul(rec,rec,p),p);
        po = po*3;
    }
    return p-1-ans;
}

ll exgcd(ll a,ll b,ll &x,ll &y){
    if(b == 0){
        x=1,y=0;
        return a;
    }
    else{
        ll d= exgcd(b,a%b,y,x);
        y-=x*(a/b);
        return d;
    }
}

int main(){
#ifndef ONLINE_JUDGE
    freopen("1in.in","r",stdin);
    freopen("1out.out","w",stdout);
#endif
    int t;cin>>t;
    while(t--){
        ll g,p,a,b;
        scanf("%lld%lld%lld",&p,&a,&b);
        for(int i= 2;;i++){ //求p的原根g
            if(judge(i,p)){
                g=i;break;
            }
        }
        // cout<<"g:"<<g<<endl;
        p_power(p); //p-1 = 2^k * 3^t
        a=get_power(a,g,p);
        b=get_power(b,g,p);
        // cout<<"a:"<<a<<" "<<"b:"<<b<<endl;
        if(a == 0 && b == 0) printf("1\n");
        else if(a == 0) printf("-1\n");
        else{
            ll x,y;
            ll d = exgcd(a,p-1,x,y);  // ax=b (mod p)-> ax+(p-1)y = b
            if(b%d) printf("-1\n");
            else{
                ll s = (p-1)/d;
                if(x < 0) x += s;
                x = qmul(x,b/d,s);
                printf("%lld\n",x);
            }
        }
    }    
}

Pohlig Hellman:

#include <bits/stdc++.h>
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <queue>
#include <cmath>
#include <string>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <cmath>
#include <ctime>
using namespace std;
#define me(x,y) memset(x,y,sizeof x)
#define MIN(x,y) (x) < (y) ? (x) : (y)
#define MAX(x,y) (x) > (y) ? (x) : (y)
#define SGN(x) ((x)>0?1:((x)<0?-1:0))
#define ABS(x) ((x)>0?(x):-(x))

typedef long long ll;
typedef unsigned long long ull;

const int maxn = 1e5+10;
const ll INF = 0x3f3f3f3f;
const int MOD = 1e9+7;
const int eps = 1e-8;

ll qmul(ll a,ll b,ll p){
    return (a*b-(ll)((long double)a*b/p)*p+p)%p;
}
ll qpow(ll a,ll b,ll p){
    ll ans=1;
    while(b){
        if(b&1) ans = qmul(ans,a,p);
        a = qmul(a,a,p);
        b >>= 1;
    }
    return ans;
}

const int S=5;

//以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
    long long ret=qpow(a,x,n);
    long long last=ret;
    for(int i=1;i<=t;i++)
    {
        ret=qmul(ret,ret,n);
        if(ret==1&&last!=1&&last!=n-1) return true;//合数
        last=ret;
    }
    if(ret!=1) return true;
    return false;
}

// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;

bool Miller_Rabin(long long n)
{
    if(n<2)return false;
    if(n==2)return true;
    if((n&1)==0) return false;//偶数
    long long x=n-1;
    long long t=0;
    while((x&1)==0){x>>=1;t++;}
    for(int i=0;i<S;i++)
    {
        long long a=rand()%(n-1)+1;
        if(check(a,n,x,t))
            return false;//合数
    }
    return true;
}

long long factor[100];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始

long long gcd(long long a,long long b)
{
    if(a==0)return 1;
    if(a<0) return gcd(-a,b);
    while(b)
    {
        long long t=a%b;
        a=b;
        b=t;
    }
    return a;
}

long long Pollard_rho(long long x,long long c)
{
    long long i=1,k=2;
    long long x0=rand()%x;
    long long y=x0;
    while(1)
    {
        i++;
        x0=(qmul(x0,x0,x)+c)%x;
        long long d=gcd(y-x0,x);
        if(d!=1&&d!=x) return d;
        if(y==x0) return x;
        if(i==k){y=x0;k+=k;}
    }
}
//对n进行素因子分解
map<ll,ll> mp;
void findfac(long long n)
{
    if(Miller_Rabin(n))//素数
    {
        factor[tol++]=n;
        mp[n]++;
        return;
    }
    long long p=n;
    while(p>=n) p=Pollard_rho(p,rand()%(n-1)+1);
    findfac(p);
    findfac(n/p);
}


ll get_n(ll x,ll a,ll p){
    tol = 0;
    mp.clear();
    findfac(x);
    for(int i= 0; i < tol; ++i){
        while(x%factor[i] == 0 && qpow(a,x/factor[i],p) == 1) 
            x /= factor[i];
    }
    mp.clear();
    findfac(x);
    return x;
}

void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){
    if(!b){
        d = a;x = 1;y = 0;return;
    }
    ex_gcd(b,a%b,d,y,x);
    y -= x*(a/b);
}

ll crt(int n,ll *a,ll *m){ // x%m[i]=a[i]
    ll M = 1,ret = 0;
    ll x,y,d;
    for(int i = 1; i <= n; ++i) M *= m[i];
    for(int i = 1; i <= n; ++i){
        ll Mi = M / m[i];
        ex_gcd(Mi,m[i],d,x,y);
        x = (x%m[i]+m[i])%m[i];
        ret = (ret+qmul(qmul(a[i],Mi,M),x,M))%M;
    }
    return (ret+M)%M;
}
map<ll,ll> hs;
ll get_c(ll b,ll p,ll pi){
    for(int i = 0; i < pi; ++i){
        if(b == hs[i]) return i;
    }
    return -1;
}

ll xx[maxn],pp[maxn];
ll  Pohlig_Hellman(ll a,ll b,ll p){
    ll n = get_n(p-1,a,p);  //a对p的阶
    ll x,y,inv = qpow(a,p-2,p),col = 0;
    for(auto it : mp){      //枚举素因子
        hs.clear();
        int pi = it.first,count = it.second;
        ll tmp = 1,cnt = qpow(a,n/pi,p);
        ll bb = b,an = 0;
        for(int i = 0; i < pi; ++i){    //哈希存储a^(n/pi),a^(2n/pi),a^(3n/pi)...
            hs[i] = tmp;
            // cout<<"hs["<<i<<"]:"<<hs[i]<<endl;
            tmp = qmul(cnt,tmp,p);
        }
        ll now = n;
        for(int i = 1; i <= count; ++i){    
            now = n/qpow(pi,i,p);   // n / (pi^i)
            ll res = qpow(bb,now,p),c;
            c = get_c(res,p,pi);
            // cout<<"c: "<<c<<"  ";
            if(c == -1) return -1;
            ll rel = c*qpow(pi,i-1,p);
            an += rel;
            ll inva = qpow(qpow(a,rel,p),p-2,p);
            // cout<<"inva:"<<inva<<"  ";
            bb = qmul(bb,inva,p);
            // cout<<"bb: "<<bb<<endl;
        }
        // cout<<endl;
        xx[++col] = an;
        pp[col] = qpow(pi,count,p);
        // cout<<"xx: " <<xx[col]<<"  pp:"<<pp[col]<<endl;
    }
    if(col == 0) return -1;
    return crt(col,xx,pp);
}

int main(){
    ios::sync_with_stdio(false);
    int t;
    cin>>t;
    while(t--){
        ll p,a,b;
        cin>>p>>a>>b;
        ll ans = Pohlig_Hellman(a,b,p);
        if(ans == -1) cout<<-1<<endl;
        else cout<<ans<<endl;
    }
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值