问题A:装箱问题

题目链接:

http://codeup.cn/problem.php?cid=100000631&pid=0

思路:

//思路:
//根据算法笔记上01背包问题的一维形式改编,就仅仅是把每件物品的价值改为1,再未做其他修改,后来发现不行

/*

const int maxn=1001;
int dp[maxn];
int w[maxn];

int main(){
    int contains;
    int n;
    scanf("%d%d",&contains,&n);
    for(int i=0;i<n;i++)
        scanf("%d",&w[i]);
//    dp[0][contains]=0;
    for(int v=0;v<=contains;v++){
        dp[v]=0;
    }
    for(int i=1;i<=n;i++){
        for(int v=contains;v>=w[i];v--){
            dp[v]=max(dp[v],dp[v-w[i]]+1);
//          dp[v]=max(dp[v],dp[v-w[i]]+c[i]);
        }
    }
/*
//    for(int i=0;i<n;i++){
//        dp[i][contains]=max(dp[i-1][contains-v[i]]+1,dp[i-1][contains]);
//    }
//    int maxn_=0;
//    for(int i=0;i<n;i++){
//        if(maxn_<dp[i][contains])
//            maxn_=dp[i][contains];
//    }
//    printf("%d\n",maxn_);
*/
    int max1=0;
    for(int v=0;v<=contains;v++){
        if(dp[v]<max1){
            max1=dp[v];
        }
    }
    printf("%d\n",contains-max1);
    return 0;
}

参照别人的答案,进行的思考:

首先,状态转移方程:dp[v]=min(dp[v],dp[v-v[i]]-v[i]),其中v[i]表示每件物品的体积

dp[i]的含义:箱子剩余的最小空间,

min的第一个参数代表:不放入第i件物品时,箱子剩余的最小空间

第二个参数代表:放入第i件物品时,箱子剩余的最小空间,

为什么会有两个-v[i]呢?

原因是:第一个 -v[i] 代表 放入v[i]后箱子的容量(必须大于等于0),第二个则是放入v[i]之后箱子的剩余容量

(PS:尽管说得不是很清楚。。。)

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;


const int maxn=1010;
int dp[maxn];
int w[maxn];
int main(){
    int V,n;
    scanf("%d%d",&V,&n);
    if(n==0)
        printf("%d\n",V);
    else{
        for(int i=0;i<n;i++){
            scanf("%d",&w[i]);
        }
        for(int i=0;i<=V;i++)//箱子剩余的容量初始为 箱子本身的容量V
            dp[i]=V;
        for(int i=1;i<=n;i++){//是从1开始,而不是0,
            for(int v=V;v>=w[i];v--){
                dp[v]=min(dp[v],dp[v-w[i]]-w[i]);//我一开始还写max函数,,,
              //dp[v]=min(dp[v],dp[V-w[i]-w[i]);
            }
        }
        int min_=V;
        for(int v=0;v<=V;v++){//寻找最小值
            if(dp[v]<min_){
                min_=dp[v];
            }
        }
        printf("%d\n",min_);
    }
    return 0;
}

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值