Kruskal最小生成树

你只有非常努力,才能看起来毫不费力。

大神整理的东西,很好的文章,贴上原网址https://blog.csdn.net/luomingjun12315/article/details/47700237

 给定一个无向图,如果它任意两个顶点都联通并且是一棵树,那么我们就称之为生成树(Spanning Tree)。如果是带权值的无向图,那么权值之和最小的生成树,我们就称之为最小生成树(MST, Minimum Spanning Tree)。

        我们由最小生成树的定义,可以延伸出一个修建道路的问题:把无向图的每个顶点看作村庄,计划修建道路使得可以在所有村庄之间通行。把每个村庄之间修建道路的费用看作权值,那么我们就可以得到一个求解修建道路的最小费用的问题。

        常见求解最小生成树的算法有Kruskal算法和Prim算法。由于篇幅问题再此对于Prim算法,就不多做解释了。现在我们看看Kruskal算法,是怎么来求解最小生成树的问题。

1、Kruskal算法描述

      Kruskal算法是基于贪心的思想得到的。首先我们把所有的边按照权值先从小到大排列,接着按照顺序选取每条边,如果这条边的两个端点不属于同一集合,那么就将它们合并,直到所有的点都属于同一个集合为止。至于怎么合并到一个集合,那么这里我们就可以用到一个工具——-并查集(不知道的同学请移步:Here)。换而言之,Kruskal算法就是基于并查集的贪心算法。

2、Kruskal算法流程

      对于图G(V,E),以下是算法描述:

输入: 图G
输出: 图G的最小生成树
具体流程:
(1)将图G看做一个森林,每个顶点为一棵独立的树
(2)将所有的边加入集合S,即一开始S = E
(3)从S中拿出一条最短的边(u,v),如果(u,v)不在同一棵树内,则连接u,v合并这两棵树,同时将(u,v)加入生成树的边集E'
(4)重复(3)直到所有点属于同一棵树,边集E'就是一棵最小生成树

输入: 图G
输出: 图G的最小生成树
具体流程:
(1)将图G看做一个森林,每个顶点为一棵独立的树
(2)将所有的边加入集合S,即一开始S = E
(3)从S中拿出一条最短的边(u,v),如果(u,v)不在同一棵树内,则连接u,v合并这两棵树,同时将(u,v)加入生成树的边集E'
(4)重复(3)直到所有点属于同一棵树,边集E'就是一棵最小生成树
      我们用现在来模拟一下Kruskal算法,下面给出一个无向图B,我们使用Kruskal来找无向图B的最小生成树。

  

        首先,我们将所有的边都进行从小到大的排序。排序之后根据贪心准则,我们选取最小边(A,D)。我们发现顶点A,D不在一棵树上,所以合并顶点A,D所在的树,并将边(A,D)加入边集E‘。

         我们接着在剩下的边中查找权值最小的边,于是我们找到的(C,E)。我们可以发现,顶点C,E仍然不在一棵树上,所以我们合并顶点C,E所在的树,并将边(C,E)加入边集E'

       不断重复上述的过程,于是我们就找到了无向图B的最小生成树,如下图所示:

3、Kruskal算法的时间复杂度

      Kruskal算法每次要从都要从剩余的边中选取一个最小的边。通常我们要先对边按权值从小到大排序,这一步的时间复杂度为为O(|Elog|E|)。Kruskal算法的实现通常使用并查集,来快速判断两个顶点是否属于同一个集合。最坏的情况可能要枚举完所有的边,此时要循环|E|次,所以这一步的时间复杂度为O(|E|α(V)),其中α为Ackermann函数,其增长非常慢,我们可以视为常数。所以Kruskal算法的时间复杂度为O(|Elog|E|)。

4、实战演练

      

#include <bits/stdc++.h>
using namespace std;
const int maxn=1000;
struct Node{
	int a,b,v;
	bool operator<(const Node a)const{
		return this->v<a.v;
	} 
}node[maxn];
int n,m;
int Rank[maxn];
int par[maxn];
void init()
{
	int i,j;
	for(i=0;i<=m;i++){
		par[i]=i;
		Rank[i]=0;
	}
}

int find(int x)
{
	int root=x;
	while(root!=par[root]) root=par[root];//找到根节点 
	while(x!=root){//并查集的合并,让在一颗数上的结点的父节点都指向根节点 
		int t=par[x];
		par[x]=root;
		x=t;
	} 
	return root;
}

void unit(int x,int y)
{
	x=find(x);
	y=find(y);
	if(Rank[x]<Rank[y])
		par[x]=y;
	else{
		par[y]=x;
		if(Rank[x]==Rank[y])
			Rank[x]++;
	} 
}

int Kruskal(int n,int m)
{
	int nedge=0,res=0;
	int i,j,k;
	for(i=0;i<n&&nedge!=m-1;i++){
		if(find(node[i].a)!=find(node[i].b)){
			unit(node[i].a,node[i].b);
			res+=node[i].v;
			nedge++;
		}
	}
	if(nedge<m-1)	return -1;
	else return res;
}

int main()
{
	while(EOF!=scanf("%d%d",&n,&m)&&n)
	{
		int i,j,k,a,b,v;
		Node temp;
		init();
		for(i=0;i<n;i++)
			scanf("%d %d %d",&node[i].a,&node[i].b,&node[i].v);
		sort(node,node+n);
		int res=Kruskal(n,m);
		if(-1==res) printf("?\n");
		else printf("%d\n",res);
	}
	return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值