「Git | GitHub」使用ssh的方式从Github克隆代码

本文详细介绍如何在GitHub上配置SSH密钥以便通过SSH方式克隆代码仓库。内容包括生成SSH密钥、后台启动SSH代理、添加密钥到GitHub账号以及使用SSH链接克隆仓库。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果对你有帮助,就点个赞吧~

本文主要介绍如何为github账号添加SSH密钥,然后使用SSH的方式克隆代码仓库

1. 生成密钥

windows系统中我们需要使用git bash, Linux系统直接命令行使用git命令,我们需要运行以下命令生成ssh密钥:
ssh-keygen -t ed25519 -C "your_email@example.com"
可以直接一路回车完成密钥的生成。

2. 后台启动ssh代理

运行以下命令以后台运行形式启动ssh代理
eval "$(ssh-agent -s)"

3. 添加密钥到github账号的ssh密钥中

路径: 个人头像 -> Settings -> 侧边栏的「SSH and GPG keys」
添加SSH key 1

运行以下命令将之前在你本地机器生成密钥内容复制到剪切板:
clip < ~/.ssh/id_ed25519.pub
或运行以下命令获取你本地机器上的ssh密钥后手动复制:
cat ~/.ssh/id_ed25519.pub

在这里插入图片描述
将密钥内容粘贴到Key内容框中后点击“Add SSH key”.

4. 克隆代码仓库

现在我们可以运行ssh命令将github上的代码clone到本地了, 如下:
git clone git@github.com:仓库路径.git
在这里插入图片描述

ssh链接就在获取http连接按钮的右侧

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明仔的阳光午后

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值