我们当然可以直接暴力求解(负次方不考虑):
int findTableSizeof2(const int target){
    if(target < 0) return 0;
    int power = 0, temp = target;
    int temp2power = 1;
    while(1){
        temp/=2; 
        if(temp){
            power++;
            temp2power*=2;
        }else{
            break;
        }
    }
    // 可能出现target是两者的平均值,就暂且返回大值吧
    return temp2power*2 - target >= target - temp2power ? temp2power*2 : temp2power;
        
但是前段时间看到一个通过位运算求值得方法,实在令人叹为观止:
int findTableSizeof2(const int target){
    int temp = target -1;
    temp |= temp >> 1;
    temp |= temp >> 2;
    temp |= temp >> 4;
    temp |= temp >> 8;
    temp |= temp >> 16;
    return (temp < 0) ? 1 : temp + 1;
}
乍一看可能有些蒙,我们随便取个值来分析一下,-------就827了(1100111011)。
1100111011 -1 temp: 1100111010
0110011101 temp>>1
1110111111 temp |= temp: 1110111111 此步主要为了保证第一位一定是1,如果所有位都为1,则已经是结果了
0011101111 temp >>2
11111111111 temp |= temp:1111111111 这样就保证了前两位一定是1,以此类推(虽然已经满足了)保证所有位为1
。。。。。。
但是这样并不是我们想要的结果,因为2的次方数只是高位为1,所以我们只需要再+1,就ok了。(这也是前面为什么要减一的原因)。
其实我们平时会遇到太多以2为基数的运算,此时一定要首先考虑位运算,比如以上的算法就会比暴力求解提升几百倍上千倍速度不止。常见的还有求余数运算。比如求对2的余:n%2---> n&1,对8的余:n&7
                  
                  
                  
                  
                            
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					593
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            