大数据怎么学习,在学习大数据之前,需要具备什么基础?

大数据行业需求旺盛,学习大数据需要基础如Java、MySQL和Linux。主要学习内容包括Hadoop、Hive、HBase等离线分析技术,Spark实时分析框架,以及机器学习库如MLlib。了解SQL和Linux环境对于大数据开发者至关重要。
摘要由CSDN通过智能技术生成

大数据又称黑暗数据,是指人脑无法处理的海量数据聚合成的信息资产,在民生、IT、金融、农业、通信等方面都有广泛应用。未来5年大数据行业呈井喷趋势,人才需求火爆,2018年大数据人才缺口更是高达900万。以后想要做大数据相关的工作,需要学习哪些技术知识?

罗马不是一天建成的,大数据工程师也不是短时间能锻造的。想要成为大数据开发工程师,也要看你是否骨骼惊奇,天赋过人!在学习大数据之前,你还需要有一定的基础!大数据学习资料分享群119599574

 

一、学习大数据需要的基础

1、java SE、EE(SSM)

90%的大数据框架都是Java写的

2、MySQL

SQL on Hadoop

3、Linux

大数据的框架安装在Linux操作系统上

在有了上面的技术基础支撑之后,便可以开始我们的大数据开发工程师的锻造之旅了,可以根据以下三个大的方面进行学习,当然了,中间需要穿插一些项目练习,将理论和实战相关联才能成长的很快!

二、大数据技术需要学什么

1、大数据离线分析

一般处理T+1数据(T:可能是1天、一周、一个月、一年)

a、Hadoop :一般不选用新版本,踩坑难解决

(common、HDES、MapReduce、YARN)

环境搭建、处理数据的思想

b、Hive:大数据的数据仓库

经过写SQL对数据进行操作,类似于MySQL数据库的

### 大数据技术学习路径 对于大数据初学者而言,构建一个清晰的学习路径至关重要。这不仅有助于理解复杂的大数据分析流程,还能确保掌握所需技能以应对实际挑战。 #### 1. 基础知识准备 在进入具体的大数据技术和工具之前,建议先打牢计算机科学基础,包括但不限于编程语言(特别是 Python 和 Java)、数据库原理以及操作系统概念[^1]。 #### 2. 掌握核心组件 熟悉 Hadoop 生态系统的组成部分是必不可少的一步。HDFS (分布式文件系统), MapReduce, YARN 等都是构成现代大规模数据处理平台的基础构件。此外,Spark 成为了更高效的数据处理引擎的选择之一[^2]。 #### 3. 数据获取与预处理 学会如何有效地收集、清洗并转换原始数据是非常重要的能力。可以利用像 Apache Flume 或 Kafka 这样的流式传输服务来捕获实时数据;而 Pandas 库则非常适合用于结构化表格型数据的操作。 #### 4. 存储解决方案探索 了解 NoSQL 数据库如 Cassandra 及其应用场景可以帮助更好地设计存储架构。同时也要关注传统关系型数据库管理系统(RDBMS),因为很多情况下两者会混合使用。 #### 5. 实战项目实践 通过完成一些小型到大型的真实案例研究或竞赛题目能够极大地提升解决问题的能力。GitHub 上有许多开源项目可供参与贡献代码或是借鉴思路。 #### 6. 高级主题深入探讨 当具备了一定的经验之后就可以尝试接触机器学习算法集成至大数据管道内运行,或者是云服务平台上的弹性计算资源管理等内容了。 ```python import pandas as pd from sklearn.model_selection import train_test_split # 加载样本数据集 data = pd.read_csv('sample_dataset.csv') # 对数据进行初步分析和清理工作... X_train, X_test, y_train, y_test = train_test_split(data.drop(['target'], axis=1), data['target'], test_size=0.2, random_state=42) print("训练集大小:", len(X_train)) print("测试集大小:", len(X_test)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值