Jetson Nano的使用(二):tensorrtx所需环境配置

本文详细指导如何在Jetson Nano上启用CUDA,设置环境变量并安装PyCUDA,以便后续使用TensorRTx。步骤包括添加CUDA路径、验证cuda环境并执行mnistCUDNN示例,以及安装PyCUDA的完整过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Jetson Nano的使用(二):tensorrtx所需环境配置

一、启用cuda

设置cuda环境变量

 cd ~
 vim .bashrc

末尾添加以下代码

export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDA_ROOT=/usr/local/cuda

重新执行.bashrc文件

source ~/.bashrc

输入nvcc -V命令进行测试,如果显示如下信息,证明修改正确。

dnano@dnano-desktop:~$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sun_Sep_30_21:09:22_CDT_2018
Cuda compilation tools, release 10.0, V10.0.166

测试cuda

cd /usr/src/cudnn_samples_v8/mnistCUDNN
sudo make
sudo chmod a+x mnistCUDNN
./mnistCUDNN

执行完上述命令,如果最后出现Test passed! 证明验证成功。

二、安装pycuda

下载pycuda。然后解压、进入解压出来的文件夹。

tar zxvf pycuda-2019.1.2.tar.gz    
cd pycuda-2019.1.2/  
python3 configure.py --cuda-root=/usr/local/cuda-10.2
sudo python3 setup.py install

等待一段时间后即可安装完成。pycuda安装成功后就可以使用tensorrtx了。安装成功如下:
在这里插入图片描述
系统环境还没配置好的话参考镜像烧录、VNC远程连接配置及系统环境配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值