Jetson Nano的使用(二):tensorrtx所需环境配置
一、启用cuda
设置cuda环境变量
cd ~
vim .bashrc
末尾添加以下代码
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDA_ROOT=/usr/local/cuda
重新执行.bashrc文件
source ~/.bashrc
输入nvcc -V命令进行测试,如果显示如下信息,证明修改正确。
dnano@dnano-desktop:~$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sun_Sep_30_21:09:22_CDT_2018
Cuda compilation tools, release 10.0, V10.0.166
测试cuda
cd /usr/src/cudnn_samples_v8/mnistCUDNN
sudo make
sudo chmod a+x mnistCUDNN
./mnistCUDNN
执行完上述命令,如果最后出现Test passed! 证明验证成功。
二、安装pycuda
下载pycuda。然后解压、进入解压出来的文件夹。
tar zxvf pycuda-2019.1.2.tar.gz
cd pycuda-2019.1.2/
python3 configure.py --cuda-root=/usr/local/cuda-10.2
sudo python3 setup.py install
等待一段时间后即可安装完成。pycuda安装成功后就可以使用tensorrtx了。安装成功如下:

系统环境还没配置好的话参考镜像烧录、VNC远程连接配置及系统环境配置
本文详细指导如何在Jetson Nano上启用CUDA,设置环境变量并安装PyCUDA,以便后续使用TensorRTx。步骤包括添加CUDA路径、验证cuda环境并执行mnistCUDNN示例,以及安装PyCUDA的完整过程。
412

被折叠的 条评论
为什么被折叠?



