目录
【说明】
efficientnetV2是目前基于CNN网络的最强分类模型,我们使用该模型对我们的项目做分类,目前我们使用的是28类,发现其泛化能力比较弱,学习能力是比较强的。
efficientnetV2的pytorch代码是参考的霹雳吧啦Wz大佬的
关于分类的C++推理代码,借鉴了
《C++使用onnxruntime/opencv对onnx模型进行推理(附代码)》
因为有些函数被弃用等,对其也做了一些修改,更方便测试
【步骤】
Ⅰ安装onnxruntime所需要的packages
打开VS2019->创建新项目->项目->管理NuGet程序包->搜索所需要的插件
Ⅱ 等待安装完毕
【代码部分】
#include <opencv2/core.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc_c.h>
#include <opencv2/dnn.hpp>
#include <opencv2/core/utils/logger.hpp>
#include <iostream>
#include <onnxruntime_cxx_api.h>
#inc

文章介绍了如何在C++中利用onnxruntime进行efficientnetV2模型的分类推理,包括安装必要的packages,处理图像预处理,以及解决在onnxruntime新版API中遇到的GetInputName和GetOutputName方法弃用的问题。代码示例展示了模型加载、输入输出处理和推理过程。

最低0.47元/天 解锁文章
4708

被折叠的 条评论
为什么被折叠?



