整数反转:巧妙处理溢出问题的算法详解
🌺The Begin🌺点点关注,收藏不迷路🌺
|
1、问题描述
给定一个32位有符号整数 x
,要求将其数字部分反转后返回。如果反转后的整数超出32位有符号整数范围 [-2³¹, 2³¹-1]
,则返回0。注意: 环境不允许存储64位整数。
示例:
- 输入:123 → 输出:321
- 输入:-123 → 输出:-321
- 输入:120 → 输出:21
- 输入:0 → 输出:0
2、问题分析
整数反转看似简单,但核心难点在于如何处理溢出问题。32位整数范围是[-2147483648, 2147483647],反转后的数字可能超出这个范围(如2147483649反转后为9463847412,超出范围)。
关键挑战:
- 反转过程中可能产生超出32位范围的中间结果
- 不能使用64位整数作为中间变量
- 需要高效处理正负数和边界值
3、算法思路:预判溢出法
我们采用预判溢出的策略,在每一步计算前检查是否会溢出:
- 统一处理为负数:利用负数范围比正数大的特性(负数范围[-2147483648,0],正数范围[0,2147483647])
- 逐位反转:通过取模和除法获取数字的每一位
- 预判溢出:在每次累加新数字前,检查:
- 如果当前结果 < INT_MIN/10,则下一步乘10后必然溢出
- 如果当前结果 == INT_MIN/10 且新数字 < INT_MIN%10,则下一步会溢出
4、C语言实现
#include <limits.h>
int reverse(int x) {
// 特殊情况处理:0反转后还是0
if (x == 0) return 0;
// 判断是否为负数
int isNegative = x < 0;
// 统一转换为负数处理(避免正数转负数时的溢出)
if (!isNegative) {
x = -x;
}
int res = 0; // 存储反转结果(负数形式)
while (x != 0) {
int digit = x % 10; // 获取当前最后一位数字
// 预判溢出:检查下一步计算是否会超出32位整数范围
if (res < INT_MIN / 10 ||
(res == INT_MIN / 10 && digit < INT_MIN % 10)) {
return 0;
}
// 更新反转结果
res = res * 10 + digit;
x /= 10;
}
// 如果是正数,转换回正数形式
return isNegative ? res : -res;
}
5、算法解析
5.1 关键步骤说明
-
统一负数处理:
if (!isNegative) { x = -x; }
将正数转为负数,避免正数范围小于负数的问题
-
预判溢出条件:
if (res < INT_MIN / 10 || (res == INT_MIN / 10 && digit < INT_MIN % 10))
INT_MIN / 10 = -214748364
INT_MIN % 10 = -8
- 如果当前结果小于-214748364,乘10后必溢出
- 如果当前结果等于-214748364且新数字<-8,乘10后加新数字会溢出
-
反转累加:
res = res * 10 + digit;
在确保不会溢出的前提下更新结果
5.2 处理流程示例(x=123)
- 转为负数:x = -123
- 循环处理:
- 第一轮:digit = -3 → res = -3
- 第二轮:digit = -2 → res = -3*10 + (-2) = -32
- 第三轮:digit = -1 → res = -32*10 + (-1) = -321
- 返回正数:-res = 321
5.3 边界情况处理
-
INT_MIN(-2147483648):
- 反转后应为-8463847412
- 处理到倒数第二位时:res = -846384741
- 检查溢出:res < INT_MIN/10 (-214748364) → 返回0
-
2147483647:
- 反转后应为7463847412
- 处理到第二位时:res = -746384741
- 检查溢出:res < INT_MIN/10 → 返回0
6、复杂度分析
- 时间复杂度:O(log|x|),取决于数字的位数
- 空间复杂度:O(1),仅使用固定数量的变量
7、关键点总结
- 负数统一处理:巧妙利用负数范围更大的特性
- 预判溢出:在计算前检查,避免实际溢出
- 边界处理:正确处理INT_MIN和INT_MAX
- 高效运算:每次迭代处理一位数字
8、常见问题
-
为什么选择负数处理?
- 负数范围[-2147483648,0]比正数[0,2147483647]多一个数
- 避免对INT_MIN取绝对值时的溢出问题
-
如何处理末尾为0的情况?
- 取模运算会自然处理:120%10=0 → 反转后0成为首位 → 后续计算中自然消除
-
为什么通过率低?
- 大多数错误源于:
- 未正确处理溢出
- 边界值处理不当
- 正负数分别处理导致逻辑复杂
- 大多数错误源于:
9、扩展思考
-
如果允许使用64位整数:
long res = 0; while (x) { res = res * 10 + x % 10; x /= 10; } return (res < INT_MIN || res > INT_MAX) ? 0 : res;
解法更简单,但不符合本题要求
-
如何输出反转过程?
- 可添加打印语句展示每一步的digit和res值
- 帮助理解算法执行过程
-
如何处理更大范围的数字?
- 可使用字符串存储数字
- 反转字符串后再转换回整数
面试提示:遇到此题应先讨论边界情况,再提出预判溢出的解法,展示严谨的思维过程。注意解释为什么选择负数处理而非正数处理。
掌握这种预判溢出的技巧,能有效解决各类整数运算中的边界问题!
🌺The End🌺点点关注,收藏不迷路🌺
|