整数反转:巧妙处理溢出问题的算法详解


🌺The Begin🌺点点关注,收藏不迷路🌺

1、问题描述

给定一个32位有符号整数 x,要求将其数字部分反转后返回。如果反转后的整数超出32位有符号整数范围 [-2³¹, 2³¹-1],则返回0。注意: 环境不允许存储64位整数。

示例:

  • 输入:123 → 输出:321
  • 输入:-123 → 输出:-321
  • 输入:120 → 输出:21
  • 输入:0 → 输出:0

2、问题分析

整数反转看似简单,但核心难点在于如何处理溢出问题。32位整数范围是[-2147483648, 2147483647],反转后的数字可能超出这个范围(如2147483649反转后为9463847412,超出范围)。

关键挑战:

  1. 反转过程中可能产生超出32位范围的中间结果
  2. 不能使用64位整数作为中间变量
  3. 需要高效处理正负数和边界值

3、算法思路:预判溢出法

我们采用预判溢出的策略,在每一步计算前检查是否会溢出:

  1. 统一处理为负数:利用负数范围比正数大的特性(负数范围[-2147483648,0],正数范围[0,2147483647])
  2. 逐位反转:通过取模和除法获取数字的每一位
  3. 预判溢出:在每次累加新数字前,检查:
    • 如果当前结果 < INT_MIN/10,则下一步乘10后必然溢出
    • 如果当前结果 == INT_MIN/10 且新数字 < INT_MIN%10,则下一步会溢出

4、C语言实现

#include <limits.h>

int reverse(int x) {
    // 特殊情况处理:0反转后还是0
    if (x == 0) return 0;
    
    // 判断是否为负数
    int isNegative = x < 0;
    
    // 统一转换为负数处理(避免正数转负数时的溢出)
    if (!isNegative) {
        x = -x;
    }
    
    int res = 0; // 存储反转结果(负数形式)
    
    while (x != 0) {
        int digit = x % 10; // 获取当前最后一位数字
        
        // 预判溢出:检查下一步计算是否会超出32位整数范围
        if (res < INT_MIN / 10 || 
            (res == INT_MIN / 10 && digit < INT_MIN % 10)) {
            return 0;
        }
        
        // 更新反转结果
        res = res * 10 + digit;
        x /= 10;
    }
    
    // 如果是正数,转换回正数形式
    return isNegative ? res : -res;
}

5、算法解析

5.1 关键步骤说明

  1. 统一负数处理

    if (!isNegative) {
        x = -x;
    }
    

    将正数转为负数,避免正数范围小于负数的问题

  2. 预判溢出条件

    if (res < INT_MIN / 10 || 
        (res == INT_MIN / 10 && digit < INT_MIN % 10))
    
    • INT_MIN / 10 = -214748364
    • INT_MIN % 10 = -8
    • 如果当前结果小于-214748364,乘10后必溢出
    • 如果当前结果等于-214748364且新数字<-8,乘10后加新数字会溢出
  3. 反转累加

    res = res * 10 + digit;
    

    在确保不会溢出的前提下更新结果

5.2 处理流程示例(x=123)

  1. 转为负数:x = -123
  2. 循环处理:
    • 第一轮:digit = -3 → res = -3
    • 第二轮:digit = -2 → res = -3*10 + (-2) = -32
    • 第三轮:digit = -1 → res = -32*10 + (-1) = -321
  3. 返回正数:-res = 321

5.3 边界情况处理

  1. INT_MIN(-2147483648)

    • 反转后应为-8463847412
    • 处理到倒数第二位时:res = -846384741
    • 检查溢出:res < INT_MIN/10 (-214748364) → 返回0
  2. 2147483647

    • 反转后应为7463847412
    • 处理到第二位时:res = -746384741
    • 检查溢出:res < INT_MIN/10 → 返回0

6、复杂度分析

  • 时间复杂度:O(log|x|),取决于数字的位数
  • 空间复杂度:O(1),仅使用固定数量的变量

7、关键点总结

  1. 负数统一处理:巧妙利用负数范围更大的特性
  2. 预判溢出:在计算前检查,避免实际溢出
  3. 边界处理:正确处理INT_MIN和INT_MAX
  4. 高效运算:每次迭代处理一位数字

8、常见问题

  1. 为什么选择负数处理?

    • 负数范围[-2147483648,0]比正数[0,2147483647]多一个数
    • 避免对INT_MIN取绝对值时的溢出问题
  2. 如何处理末尾为0的情况?

    • 取模运算会自然处理:120%10=0 → 反转后0成为首位 → 后续计算中自然消除
  3. 为什么通过率低?

    • 大多数错误源于:
      • 未正确处理溢出
      • 边界值处理不当
      • 正负数分别处理导致逻辑复杂

9、扩展思考

  1. 如果允许使用64位整数

    long res = 0;
    while (x) {
        res = res * 10 + x % 10;
        x /= 10;
    }
    return (res < INT_MIN || res > INT_MAX) ? 0 : res;
    

    解法更简单,但不符合本题要求

  2. 如何输出反转过程?

    • 可添加打印语句展示每一步的digit和res值
    • 帮助理解算法执行过程
  3. 如何处理更大范围的数字?

    • 可使用字符串存储数字
    • 反转字符串后再转换回整数

面试提示:遇到此题应先讨论边界情况,再提出预判溢出的解法,展示严谨的思维过程。注意解释为什么选择负数处理而非正数处理。

掌握这种预判溢出的技巧,能有效解决各类整数运算中的边界问题!

在这里插入图片描述


🌺The End🌺点点关注,收藏不迷路🌺
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Seal^_^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值