知识点 - 多项式操作合集

知识点 - 多项式操作合集

解决问题类型:

支持多项式大多数操作, poly<T> 的系数类为 T.

支持四则运算 +, -, *, % and /, % and / 代表除和取余。

模质数 m意义下的多项式用 modular<m> 表示。

其它函数:

  • deriv(): 求微分 P ′ ( x ) P&#x27;(x) P(x) of P ( x ) P(x) P(x).
  • integr(): 求积分 Q ( x ) = ∫ P ( x ) Q(x) = \int P(x) Q(x)=P(x) of P ( x ) P(x) P(x) such that Q ( 0 ) = 0 Q(0)=0 Q(0)=0.
  • inv(size_t n): 求逆的前n个系数 P − 1 ( x ) P^{-1}(x) P1(x) in O ( n log ⁡ n ) O(n \log n) O(nlogn).
  • log(size_t n): 求ln的前n个系数 ln ⁡ P ( x ) \ln P(x) lnP(x) in O ( n log ⁡ n ) O(n \log n) O(nlogn).
  • exp(size_t n): 求exp的前n个系数 exp ⁡ P ( x ) \exp P(x) expP(x) in O ( n log ⁡ n ) O(n \log n) O(nlogn).
  • pow(size_t k, size_t n): 求幂的前n个系数 P k ( x ) P^{k}(x) Pk(x) in O ( n log ⁡ n k ) O(n \log nk) O(nlognk).
  • deg(): 返回次数 P ( x ) P(x) P(x).
  • lead(): 返回最高次项 x deg ⁡ P ( x ) x^{\deg P(x)} xdegP(x).
  • resultant(poly<T> a, poly<T> b): 合矢量 of a a a and b b b in O ( ∣ a ∣ ⋅ ∣ b ∣ ) O(|a| \cdot |b|) O(ab).
  • bpow(T x, size_t n): 计算 x n x^n xn.
  • bpow(T x, size_t n, T m): 计算 x n ( m o d m ) x^n \pmod{m} xn(modm).
  • chirpz(T z, size_t n): 计算 P ( 1 ) , P ( z ) , P ( z 2 ) , … , P ( z n − 1 ) P(1), P(z), P(z^2), \dots, P(z^{n-1}) P(1),P(z),P(z2),,P(zn1) in O ( n log ⁡ n ) O(n \log n) O(nlogn).
  • vector<T> eval(vector<T> x): 计算 P ( x 1 ) , … , P ( x n ) P(x_1), \dots, P(x_n) P(x1),,P(xn) in O ( n log ⁡ 2 n ) O(n \log^2 n) O(nlog2n).
  • poly<T> inter(vector<T> x, vector<T> y): 插值出一个多项式,根据一组 P ( x i ) = y i P(x_i) = y_i P(xi)=yi in O ( n log ⁡ 2 n ) O(n \log^2 n) O(nlog2n).
  • And some more, feel free to explore the code!
  • 函数具体实现细节

复杂度:

O ( n log ⁡ n ) O(n \log n) O(nlogn).

例题

exe

代码

n^2乘和快速幂

vector<int> operator*(vector<int> &a, vector<int> &b)
{
    int sz = min((int)a.size() + (int)b.size() - 1, p - 1);
    vector<int> ans(sz, 0);
    for (int i = 0; i < (int)a.size(); i++)
        for (int j = 0; j < (int)b.size(); j++)
            (ans[(i + j) % (p - 1)] += a[i] * b[j]) %= p;
    return ans;
}

vector<int> operator^(vector<int> cur, int p)
{
    if (p == 1)
        return cur;
    vector<int> tmp = cur ^ (p / 2);
    tmp = tmp * tmp;
    if (p & 1)
        tmp = tmp * cur;
    return tmp;
}

合集:

#include <bits/stdc++.h>

using namespace std;
namespace algebra {
	const int inf = 1e9;
	const int magic = 500; // threshold for sizes to run the naive algo
	
	namespace fft {
		const int maxn = 1 << 18;

		typedef double ftype;
		typedef complex<ftype> point;

		point w[maxn];
		const ftype pi = acos(-1);
		bool initiated = 0;
		void init() {
			if(!initiated) {
				for(int i = 1; i < maxn; i *= 2) {
					for(int j = 0; j < i; j++) {
						w[i + j] = polar(ftype(1), pi * j / i);
					}
				}
				initiated = 1;
			}
		}
		template<typename T>
		void fft(T *in, point *out, int n, int k = 1) {
			if(n == 1) {
				*out = *in;
			} else {
				n /= 2;
				fft(in, out, n, 2 * k);
				fft(in + k, out + n, n, 2 * k);
				for(int i = 0; i < n; i++) {
					auto t = out[i + n] * w[i + n];
					out[i + n] = out[i] - t;
					out[i] += t;
				}
			}
		}
		
		template<typename T>
		void mul_slow(vector<T> &a, const vector<T> &b) {
			vector<T> res(a.size() + b.size() - 1);
			for(size_t i = 0; i < a.size(); i++) {
				for(size_t j = 0; j < b.size(); j++) {
					res[i + j] += a[i] * b[j];
				}
			}
			a = res;
		}
		
		
		template<typename T>
		void mul(vector<T> &a, const vector<T> &b) {
			if(min(a.size(), b.size()) < magic) {
				mul_slow(a, b);
				return;
			}
			init();
			static const int shift = 15, mask = (1 << shift) - 1;
			size_t n = a.size() + b.size() - 1;
			while(__builtin_popcount(n) != 1) {
				n++;
			}
			a.resize(n);
			static point A[maxn], B[maxn];
			static point C[maxn], D[maxn];
			for(size_t i = 0; i < n; i++) {
				A[i] = point(a[i] & mask, a[i] >> shift);
				if(i < b.size()) {
					B[i] = point(b[i] & mask, b[i] >> shift);
				} else {
					B[i] = 0;
				}
			}
			fft(A, C, n); fft(B, D, n);
			for(size_t i = 0; i < n; i++) {
				point c0 = C[i] + conj(C[(n - i) % n]);
				point c1 = C[i] - conj(C[(n - i) % n]);
				point d0 = D[i] + conj(D[(n - i) % n]);
				point d1 = D[i] - conj(D[(n - i) % n]);
				A[i] = c0 * d0 - point(0, 1) * c1 * d1;
				B[i] = c0 * d1 + d0 * c1;
			}
			fft(A, C, n); fft(B, D, n);
			reverse(C + 1, C + n);
			reverse(D + 1, D + n);
			int t = 4 * n;
			for(size_t i = 0; i < n; i++) {
				int64_t A0 = llround(real(C[i]) / t);
				T A1 = llround(imag(D[i]) / t);
				T A2 = llround(imag(C[i]) / t);
				a[i] = A0 + (A1 << shift) + (A2 << 2 * shift);
			}
			return;
		}
	}
	template<typename T>
	T bpow(T x, size_t n) {
		return n ? n % 2 ? x * bpow(x, n - 1) : bpow(x * x, n / 2) : T(1);
	}
	template<typename T>
	T bpow(T x, size_t n, T m) {
		return n ? n % 2 ? x * bpow(x, n - 1, m) % m : bpow(x * x % m, n / 2, m) : T(1);
	}
	template<typename T>
	T gcd(const T &a, const T &b) {
		return b == T(0) ? a : gcd(b, a % b);
	}
	template<typename T>
	T nCr(T n, int r) { // runs in O(r)
		T res(1);
		for(int i = 0; i < r; i++) {
			res *= (n - T(i));
			res /= (i + 1);
		}
		return res;
	}

	template<int m>
	struct modular {
		int64_t r;
		modular() : r(0) {}
		modular(int64_t rr) : r(rr) {if(abs(r) >= m) r %= m; if(r < 0) r += m;}
		modular inv() const {return bpow(*this, m - 2);}
		modular operator * (const modular &t) const {return (r * t.r) % m;}
		modular operator / (const modular &t) const {return *this * t.inv();}
		modular operator += (const modular &t) {r += t.r; if(r >= m) r -= m; return *this;}
		modular operator -= (const modular &t) {r -= t.r; if(r < 0) r += m; return *this;}
		modular operator + (const modular &t) const {return modular(*this) += t;}
		modular operator - (const modular &t) const {return modular(*this) -= t;}
		modular operator *= (const modular &t) {return *this = *this * t;}
		modular operator /= (const modular &t) {return *this = *this / t;}
		
		bool operator == (const modular &t) const {return r == t.r;}
		bool operator != (const modular &t) const {return r != t.r;}
		
		operator int64_t() const {return r;}
	};
	template<int T>
	istream& operator >> (istream &in, modular<T> &x) {
		return in >> x.r;
	}
	
	
	template<typename T>
	struct poly {
		vector<T> a;
		
		void normalize() { // get rid of leading zeroes
			while(!a.empty() && a.back() == T(0)) {
				a.pop_back();
			}
		}
		
		poly(){}
		poly(T a0) : a{a0}{normalize();}
		poly(vector<T> t) : a(t){normalize();}
		
		poly operator += (const poly &t) {
			a.resize(max(a.size(), t.a.size()));
			for(size_t i = 0; i < t.a.size(); i++) {
				a[i] += t.a[i];
			}
			normalize();
			return *this;
		}
		poly operator -= (const poly &t) {
			a.resize(max(a.size(), t.a.size()));
			for(size_t i = 0; i < t.a.size(); i++) {
				a[i] -= t.a[i];
			}
			normalize();
			return *this;
		}
		poly operator + (const poly &t) const {return poly(*this) += t;}
		poly operator - (const poly &t) const {return poly(*this) -= t;}
		
		poly mod_xk(size_t k) const { // get same polynomial mod x^k
			k = min(k, a.size());
			return vector<T>(begin(a), begin(a) + k);
		}
		poly mul_xk(size_t k) const { // multiply by x^k
			poly res(*this);
			res.a.insert(begin(res.a), k, 0);
			return res;
		}
		poly div_xk(size_t k) const { // divide by x^k, dropping coefficients
			k = min(k, a.size());
			return vector<T>(begin(a) + k, end(a));
		}
		poly substr(size_t l, size_t r) const { // return mod_xk(r).div_xk(l)
			l = min(l, a.size());
			r = min(r, a.size());
			return vector<T>(begin(a) + l, begin(a) + r);
		}
		poly inv(size_t n) const { // get inverse series mod x^n
			assert(!is_zero());
			poly ans = a[0].inv();
			size_t a = 1;
			while(a < n) {
				poly C = (ans * mod_xk(2 * a)).substr(a, 2 * a);
				ans -= (ans * C).mod_xk(a).mul_xk(a);
				a *= 2;
			}
			return ans.mod_xk(n);
		}
		
		poly operator *= (const poly &t) {fft::mul(a, t.a); normalize(); return *this;}
		poly operator * (const poly &t) const {return poly(*this) *= t;}
		
		poly reverse(size_t n, bool rev = 0) const { // reverses and leaves only n terms
			poly res(*this);
			if(rev) { // If rev = 1 then tail goes to head
				res.a.resize(max(n, res.a.size()));
			}
			std::reverse(res.a.begin(), res.a.end());
			return res.mod_xk(n);
		}
		
		pair<poly, poly> divmod_slow(const poly &b) const { // when divisor or quotient is small
			vector<T> A(a);
			vector<T> res;
			while(A.size() >= b.a.size()) {
				res.push_back(A.back() / b.a.back());
				if(res.back() != T(0)) {
					for(size_t i = 0; i < b.a.size(); i++) {
						A[A.size() - i - 1] -= res.back() * b.a[b.a.size() - i - 1];
					}
				}
				A.pop_back();
			}
			std::reverse(begin(res), end(res));
			return {res, A};
		}
		
		pair<poly, poly> divmod(const poly &b) const { // returns quotiend and remainder of a mod b
			if(deg() < b.deg()) {
				return {poly{0}, *this};
			}
			int d = deg() - b.deg();
			if(min(d, b.deg()) < magic) {
				return divmod_slow(b);
			}
			poly D = (reverse(d + 1) * b.reverse(d + 1).inv(d + 1)).mod_xk(d + 1).reverse(d + 1, 1);
			return {D, *this - D * b};
		}
		
		poly operator / (const poly &t) const {return divmod(t).first;}
		poly operator % (const poly &t) const {return divmod(t).second;}
		poly operator /= (const poly &t) {return *this = divmod(t).first;}
		poly operator %= (const poly &t) {return *this = divmod(t).second;}
		poly operator *= (const T &x) {
			for(auto &it: a) {
				it *= x;
			}
			normalize();
			return *this;
		}
		poly operator /= (const T &x) {
			for(auto &it: a) {
				it /= x;
			}
			normalize();
			return *this;
		}
		poly operator * (const T &x) const {return poly(*this) *= x;}
		poly operator / (const T &x) const {return poly(*this) /= x;}
		
		void print() const {
			for(auto it: a) {
				cout << it << ' ';
			}
			cout << endl;
		}
		T eval(T x) const { // evaluates in single point x
			T res(0);
			for(int i = int(a.size()) - 1; i >= 0; i--) {
				res *= x;
				res += a[i];
			}
			return res;
		}
		
		T& lead() { // leading coefficient
			return a.back();
		}
		int deg() const { // degree
			return a.empty() ? -inf : a.size() - 1;
		}
		bool is_zero() const { // is polynomial zero
			return a.empty();
		}
		T operator [](int idx) const {
			return idx >= (int)a.size() || idx < 0 ? T(0) : a[idx];
		}
		
		T& coef(size_t idx) { // mutable reference at coefficient
			return a[idx];
		}
		bool operator == (const poly &t) const {return a == t.a;}
		bool operator != (const poly &t) const {return a != t.a;}
		
		poly deriv() { // calculate derivative
			vector<T> res;
			for(int i = 1; i <= deg(); i++) {
				res.push_back(T(i) * a[i]);
			}
			return res;
		}
		poly integr() { // calculate integral with C = 0
			vector<T> res = {0};
			for(int i = 0; i <= deg(); i++) {
				res.push_back(a[i] / T(i + 1));
			}
			return res;
		}
		size_t leading_xk() const { // Let p(x) = x^k * t(x), return k
			if(is_zero()) {
				return inf;
			}
			int res = 0;
			while(a[res] == T(0)) {
				res++;
			}
			return res;
		}
		poly log(size_t n) { // calculate log p(x) mod x^n
			assert(a[0] == T(1));
			return (deriv().mod_xk(n) * inv(n)).integr().mod_xk(n);
		}
		poly exp(size_t n) { // calculate exp p(x) mod x^n
			if(is_zero()) {
				return T(1);
			}
			assert(a[0] == T(0));
			poly ans = T(1);
			size_t a = 1;
			while(a < n) {
				poly C = ans.log(2 * a).div_xk(a) - substr(a, 2 * a);
				ans -= (ans * C).mod_xk(a).mul_xk(a);
				a *= 2;
			}
			return ans.mod_xk(n);
			
		}
		poly pow_slow(size_t k, size_t n) { // if k is small
			return k ? k % 2 ? (*this * pow_slow(k - 1, n)).mod_xk(n) : (*this * *this).mod_xk(n).pow_slow(k / 2, n) : T(1);
		}
		poly pow(size_t k, size_t n) { // calculate p^k(n) mod x^n
			if(is_zero()) {
				return *this;
			}
			if(k < magic) {
				return pow_slow(k, n);
			}
			int i = leading_xk();
			T j = a[i];
			poly t = div_xk(i) / j;
			return bpow(j, k) * (t.log(n) * T(k)).exp(n).mul_xk(i * k).mod_xk(n);
		}
		poly mulx(T x) { // component-wise multiplication with x^k
			T cur = 1;
			poly res(*this);
			for(int i = 0; i <= deg(); i++) {
				res.coef(i) *= cur;
				cur *= x;
			}
			return res;
		}
		poly mulx_sq(T x) { // component-wise multiplication with x^{k^2}
			T cur = x;
			T total = 1;
			T xx = x * x;
			poly res(*this);
			for(int i = 0; i <= deg(); i++) {
				res.coef(i) *= total;
				total *= cur;
				cur *= xx;
			}
			return res;
		}
		vector<T> chirpz_even(T z, int n) { // P(1), P(z^2), P(z^4), ..., P(z^2(n-1))
			int m = deg();
			if(is_zero()) {
				return vector<T>(n, 0);
			}
			vector<T> vv(m + n);
			T zi = z.inv();
			T zz = zi * zi;
			T cur = zi;
			T total = 1;
			for(int i = 0; i <= max(n - 1, m); i++) {
				if(i <= m) {vv[m - i] = total;}
				if(i < n) {vv[m + i] = total;}
				total *= cur;
				cur *= zz;
			}
			poly w = (mulx_sq(z) * vv).substr(m, m + n).mulx_sq(z);
			vector<T> res(n);
			for(int i = 0; i < n; i++) {
				res[i] = w[i];
			}
			return res;
		}
		vector<T> chirpz(T z, int n) { // P(1), P(z), P(z^2), ..., P(z^(n-1))
			auto even = chirpz_even(z, (n + 1) / 2);
			auto odd = mulx(z).chirpz_even(z, n / 2);
			vector<T> ans(n);
			for(int i = 0; i < n / 2; i++) {
				ans[2 * i] = even[i];
				ans[2 * i + 1] = odd[i];
			}
			if(n % 2 == 1) {
				ans[n - 1] = even.back();
			}
			return ans;
		}
		template<typename iter>
		vector<T> eval(vector<poly> &tree, int v, iter l, iter r) { // auxiliary evaluation function
			if(r - l == 1) {
				return {eval(*l)};
			} else {
				auto m = l + (r - l) / 2;
				auto A = (*this % tree[2 * v]).eval(tree, 2 * v, l, m);
				auto B = (*this % tree[2 * v + 1]).eval(tree, 2 * v + 1, m, r);
				A.insert(end(A), begin(B), end(B));
				return A;
			}
		}
		vector<T> eval(vector<T> x) { // evaluate polynomial in (x1, ..., xn)
			int n = x.size();
			if(is_zero()) {
				return vector<T>(n, T(0));
			}
			vector<poly> tree(4 * n);
			build(tree, 1, begin(x), end(x));
			return eval(tree, 1, begin(x), end(x));
		}
		template<typename iter>
		poly inter(vector<poly> &tree, int v, iter l, iter r, iter ly, iter ry) { // auxiliary interpolation function
			if(r - l == 1) {
				return {*ly / a[0]};
			} else {
				auto m = l + (r - l) / 2;
				auto my = ly + (ry - ly) / 2;
				auto A = (*this % tree[2 * v]).inter(tree, 2 * v, l, m, ly, my);
				auto B = (*this % tree[2 * v + 1]).inter(tree, 2 * v + 1, m, r, my, ry);
				return A * tree[2 * v + 1] + B * tree[2 * v];
			}
		}
	};
	template<typename T>
	poly<T> operator * (const T& a, const poly<T>& b) {
		return b * a;
	}
	
	template<typename T>
	poly<T> xk(int k) { // return x^k
		return poly<T>{1}.mul_xk(k);
	}

	template<typename T>
	T resultant(poly<T> a, poly<T> b) { // computes resultant of a and b
		if(b.is_zero()) {
			return 0;
		} else if(b.deg() == 0) {
			return bpow(b.lead(), a.deg());
		} else {
			int pw = a.deg();
			a %= b;
			pw -= a.deg();
			T mul = bpow(b.lead(), pw) * T((b.deg() & a.deg() & 1) ? -1 : 1);
			T ans = resultant(b, a);
			return ans * mul;
		}
	}
	template<typename iter>
	poly<typename iter::value_type> kmul(iter L, iter R) { // computes (x-a1)(x-a2)...(x-an) without building tree
		if(R - L == 1) {
			return vector<typename iter::value_type>{-*L, 1};
		} else {
			iter M = L + (R - L) / 2;
			return kmul(L, M) * kmul(M, R);
		}
	}
	template<typename T, typename iter>
	poly<T> build(vector<poly<T>> &res, int v, iter L, iter R) { // builds evaluation tree for (x-a1)(x-a2)...(x-an)
		if(R - L == 1) {
			return res[v] = vector<T>{-*L, 1};
		} else {
			iter M = L + (R - L) / 2;
			return res[v] = build(res, 2 * v, L, M) * build(res, 2 * v + 1, M, R);
		}
	}
	template<typename T>
	poly<T> inter(vector<T> x, vector<T> y) { // interpolates minimum polynomial from (xi, yi) pairs
		int n = x.size();
		vector<poly<T>> tree(4 * n);
		return build(tree, 1, begin(x), end(x)).deriv().inter(tree, 1, begin(x), end(x), begin(y), end(y));
	}
};

using namespace algebra;

const int mod = 1e9 + 7;
typedef modular<mod> base;
typedef poly<base> polyn;

using namespace algebra;

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0);
	int n = 100000;
	polyn a;
	vector<base> x;
	for(int i = 0; i <= n; i++) {
		a.a.push_back(1 + rand() % 100);
		x.push_back(1 + rand() % (2 * n));
	}
	sort(begin(x), end(x));
	x.erase(unique(begin(x), end(x)), end(x));
	auto b = a.eval(x);
	cout << clock() / double(CLOCKS_PER_SEC) << endl;
	auto c = inter(x, b);
	polyn md = kmul(begin(x), end(x));
	cout << clock() / double(CLOCKS_PER_SEC) << endl;
	assert(c == a % md);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Best KeyBoard

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值