文章目录
Numpy
学习目标
- 了解Numpy运算速度上的优势
- 知道数组的属性,形状、类型
- 应用Numpy实现数组的基本操作
- 应用随机数组的创建实现正态分布应用
- 应用Numpy实现数组的逻辑运算
- 应用Numpy实现数组的统计运算
- 应用Numpy实现数组之间的运算
4.1 Numpy优势
学习目标
目标
- 了解Numpy运算速度上的优势
- 知道Numpy的数组内存块风格
- 知道Numpy的并行化运算
4.1.1 Numpy介绍
Numpy(Numerical Python)是一个开源的Python科学计算库,用于快速处理任意维度的数组。
Numpy支持常见的数组和矩阵操作。对于同样的数值计算任务,使用Numpy比直接使用Python要简洁的多。
Numpy使用ndarray对象来处理多维数组,该对象是一个快速而灵活的大数据容器。
4.1.2 ndarray介绍
NumPy provides an N-dimensional array type,the ndarray,
which describes a collection of"items"of the same type.
-
NumPy提供了一个N维数组类型ndarray,它描述了相同类型的“items”的集合。
用ndarray进行存储:
import numpy as np
#创建ndarray
score=np.array(
[[80,89,86,67,79],
[78,97,89,67,81],
[90,94,78,67,74],
[91,91,90,67,69],
[76,87,75,67,86],
[70,79,84,67,84],
[94,92,93,67,64],
[86,85,83,67,80]])
score
返回结果:
提问:
使用Python列表可以存储一维数组,通过列表的嵌套可以实现多维数组,那么为什么还需要使用Numpy的ndarray呢?
4.1.3 ndarray与Python原生list运算效率对比
在这里我们通过一段代码运行来体会到ndarray的好处
import random
import time
import numpy as np
a = []
for i in range(10000000):
a.append(random.random())
#通过%time魔法方法,查看当前行的代码运行一次所花费的时间
%time sum1=sum(a)
b=np.array(a)
%time sum2=np.sum(b
)
其中第一个时间显示的是使用原生Python计算时间,第二个内容是使用numpy计算时间:
CPU times:user 852 ms,sys:262 ms,total:1.11s
Wall time:1.13s
CPU times:user 133 ms,sys:653 us,total:133 ms
Wall time:134ms
从中我们看到ndarray的计算速度要快很多,节约了时间。
机器学习的最大特点就是大量的数据运算,那么如果没有一个快速的解决方案,那可能现在python也在机器学习领域达不到好的效果。
Numpy专门针对ndarray的操作和运算进行了设计,所以数组的存储效率和输入输出性能远优于Python中的嵌套列表,数组越大,Numpy的优势就越明显。
ndarray为什么可以这么快?
4.1.4 ndarray的优势
4.1.4.1内存块风橙
ndarray到底跟原生python列表有什么不同呢,请看一张图:
从图中我们可以看出ndarray在存储数据的时候,数据与数据的地址都是连续的,这样就给使得批量操作数组元素时速度更快。
这是因为ndarray中的所有元素的类型都是相同的,而Python列表中的元素类型是任意的,所以ndarray在存储元素时内存可以连续,而python原生list就只能通过寻址方式找到下一个元素,这虽然也导致了在通用性能方面Numpy的ndarray不及Python原生list,但在科学计算中,Numpy的ndarray就可以省掉很多循环语句,代码使用方面比Python原生list简单的多。
4.1.4.2 ndarray支持并行化运算(向量化运算)
-
numpy内置了并行运算功能,当系统有多个核心时,做某种计算时,numpy会自动做并行计算
4.1.4.3效率远高于纯Python代码
-
Numpy底层使用C语言编写,内部解除了GIL(全局解释器锁),其对数组的操作速度不受Python解释器的限制,所以,其效率远高于纯Python代码。
4.1.5小结
- numpy介绍【了解】
- 一个开源的Python科学计算库
- 计算器来要比python简洁高效
- Numpy使用ndarray对象来处理多维数组 - ndarray介绍【了解】
- NumPy提供了一个N维数组类型ndarray,它描述了相同类型的“items”的集合。
- 生成numpy对象:np.array() - ndarray的优势【掌握】
- 内存块风格
- list–分离式存储,存储内容多样化
- ndarray–一体式存储,存储类型必须一样 - ndarray支持并行化运算(向量化运算)
- ndarray底层是用C语言写的,效率更高,释放了GIL
- 内存块风格
4.2 N维数组-ndarray
学习目标
- 目标
- 说明数组的属性,形状、类型
4.2.1 ndarray的属性
数组属性反映了数组本身固有的信息。
属性名字 | 属性解释 |
---|---|
ndarray.shap | 数组维度的元组 |
ndarray.ndim | 数组维数 |
ndarray.size | 数组中的元素数量 |
ndarray.itemsize | 一个数组元素的长度(字节) |
ndarray.dtype | 数组元素的类型 |
4.2.2 ndarray的形状
首先创建一些数组。
#创建不同形状的数组
>>>a=np.array([[1,2,3],[4,5,6]])
>>>b=np.array([1,2,3,4])
>>>c=np.array([[[1,2,3],[4,5,6]],[[1,2,3],[4,5,6]11)
分别打印出形状
>>>a.shape
>>>b.shape
>>>c.shape
(2,3)#二维数组
(4,)#一维数组
(2,2,3)#三维数组
如何理解数组的形状?
二维数组:
三维数组:
4.2.3ndarray的类型
>>>type(score.dtype)
<type'numpy.dtype'>
dtype是numpy.dtype类型,先看看对于数组来说都有哪些类型
创建数组的时候指定类型
>>>a=np.array([[1,2,3],[4,5,6]],dtype=np.float32)
>>>a.dtype
dtype('float32')
>>>arr=np.array(['python','tensorflow','scikit-learn','numpy'],dtype=np.string_)
>>>arr
array([b'python',b'tensorflow',b'scikit-learn',b'numpy'],dtype='l512')
- 注意:若不指定,整数默认int64,小数默认float64
4.2.4 总结
-数组的基本属性【知道】
属性名字 | 属性解释 |
---|---|
ndarray.shape | 数组维度的元组 |
ndaray.ndim | 数组维数 |
ndarray.size | 数组中的元素数量 |
ndarray.itemsize | 一个数组元素的长度(字节) |
ndarray.dtype | 数组元素的类型 |
点个赞吧!!!你的鼓励是对我码字的认可😀😀😀
👇👇👇