Java8的新特性主要是Lambda表达式和流,当流和Lambda表达式结合起来一起是应用时,因为流声明式处理数据集合的特点,可以让代码变得简洁易读。
流如何简化代码
如果有一个需求,需要对数据库查询到的集合进行处理:
- 筛选出借款金额小于5000的用户
- 对筛选出的用户进行排序
- 获取排序后的用户名字
用户:User.java
public class User{
private String name;
private int status;
private BigDecimal maney;
private Type Type;
}
Java8之前的实现方式
private List<String> userListByManey(List<User> userList){
List<User> userLists = new ArrayList<>();
//1. 筛选出借款金额小于5000的用户
for(User u : userList){
if(u.getMaeny() < 5000){
userLists.add(u);
}
}
// 2 对筛选出的金额进行排序
Collections.sort(userLists, new Comparator<User>() {
@Override
public BigDecimal compare(User o1, User o2) {
return BigDecimal.compare(o1.getManey(), o2.getManey());
}
});
//3. 获取排序后用户的名字
List<String> lowCaloricUserName = new ArrayList<>();
for (Dish d : userLists) {
lowCaloricUserName.add(d.getName());
}
return lowCaloricUserName;
}
使用Stream流之后的实现方式
private List<String> StreamUser(List<User> userList) {
return userList.stream()
.filter(d -> d.getCalories() < 5000) //筛选出借款金额小于5000的用户
.sorted(comparing(User::getManey)) //根据金额进行排序
.map(User::getName) //提取用户名称
.collect(Collectors.toList()); //转换为List
}
不拖泥带水,一气呵成,原来需要写24代码实现的功能现在只需5行就可以完成了。
写完这个需求本来能开心一下,休息一会儿,没想到又有新需求了,新需求如下:
- 对数据库查询到的用户根据用户状态进行分类,返回一个Map<Type, List>的结果
jdk1.8之前的实现方式
private static Map<Type, List<User>> queryUserByStatus(List<User> userList) {
Map<Type, List<User>> result = new HashMap<>();
for (User user : userList) {
//不存在则初始化
if (result.get(user.getType())==null) {
List<User> users = new ArrayList<>();
users.add(user);
result.put(user.getType(), users);
} else {
//存在则追加
result.get(user.getType()).add(user);
}
}
return result;
}
用Stream的方式来处理
private static Map<Type, List<Dish>> queryUserByStatus(List<User> userList) {
return userList.stream().collect(groupingBy(User::getType));
}
一行代码解决了需求,不禁感叹Sream API的厉害,接下来将详细介绍流。
什么是流
流是从支持数据处理操作的源生成的元素序列,源可以是数组、文件、集合、函数。流不是集合元素,它不是数据结构并不保存数据,它的主要目的在于计算。
如何生成流
生成流的方式主要有5中。
1.通过集合生成,应用中最常用的一种
List<Integer> integerList = Arrays.asList(1, 2, 3, 4, 5);
Stream<Integer> stream = integerList.stream();
通过集合的stream方法生成流。
通过数组生成
int[] intArr = new int[]{1, 2, 3, 4, 5};
IntStream stream = Arrays.stream(intArr);
通过Arrays.stream方法生成流,并且该方法生成的流是数值流【即IntStream】而不是Stream。补充一点使用数值流可以避免计算过程中拆箱装箱,提高性能。
Stream API提供了mapToInt、mapToDouble、mapToLong三种方式将对象流【即Stream】转换成对应的数值流,同时提供了boxed方法将数值流转换为对象流。
3.通过值生成
Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5);
通过Stream的of方法生成流,通过Stream的empty方法可以生成一个空流
4.通过文件生成
Stream<String> lines = Files.lines(Paths.get("data.txt"), Charset.defaultCharset())
通过Files.line方法得到一个流,并且得到的每个流是给定文件中的一行
5.通过函数生成 提供了iterate和generate两个静态方法从函数中生成流
iterator
Stream<Integer> stream = Stream.iterate(0, n -> n + 2).limit(5);
iterate方法接受两个参数,第一个为初始化值,第二个为进行的函数操作,因为iterator生成的流为无限流,通过limit方法对流进行了截断,只生成5个偶数
generator
Stream<Double> stream = Stream.generate(Math::random).limit(5);
generate方法接受一个参数,方法参数类型为Supplier,由它为流提供值。generate生成的流也是无限流,因此通过limit对流进行了截断。
流的操作类型
流的操作类型主要分为两种。
1.中间操作
一个流可以后面跟随零个或多个中间操作。其目的主要是打开流,做出某种程度的数据映射/过滤,然后返回一个新的流,交给下一个操作使用。这类操作都是惰性化的,仅仅调用到这类方法,并没有真正开始流的遍历,真正的遍历需等到终端操作时,常见的中间操作有下面即将介绍的filter、map等。
2.终端操作
一个流有且只能有一个终端操作,当这个操作执行后,流就被关闭了,无法再被操作,因此一个流只能被遍历一次,若想在遍历需要通过源数据在生成流。终端操作的执行,才会真正开始流的遍历。如下面即将介绍的count、collect等。
流的使用
中间操作
List<Integer> integerList = Arrays.asList(1, 1, 2, 3, 4, 5);
// filtre筛选
Stream<Integer> stream = integerList.stream().filter(i -> i > 3);
// distinct 去重
Stream<Integer> stream = integerList.stream().distinct();
// limit返回指定流个数
Stream<Integer> stream = integerList.stream().limit(3);
// skip跳过流中的元素
Stream<Integer> stream = integerList.stream().skip(2);
map流映射
所谓流映射就是将接受的元素映射成另外一个元素。
List<String> stringList = Arrays.asList("Java 8", "Lambdas", "In", "Action");
Stream<Integer> stream = stringList.stream().map(String::length);
通过map方法可以完成映射,该例子完成中String -> Integer的映射,之前上面的例子通过map方法完成了Dish->String的映射。
flatMap流转换
将一个流中的每个值都转换为另一个流。
List<String> wordList = Arrays.asList("Hello", "World");
List<String> strList = wordList.stream()
.map(w -> w.split(" "))
.flatMap(Arrays::stream)
.distinct()
.collect(Collectors.toList());
map(w -> w.split(" "))的返回值为Stream<String[]>,我们想获取Stream,可以通过flatMap方法完成Stream ->Stream的转换
元素匹配
List<Integer> integerList = Arrays.asList(1, 2, 3, 4, 5);
// 1.allMatch匹配所有
if (integerList.stream().allMatch(i -> i > 3)) {
System.out.println("值都大于3");
}
// 2.anyMatch匹配其中一个
if (integerList.stream().anyMatch(i -> i > 3)) {
System.out.println("存在大于3的值");
}
// 等同于 if (i > 3)
// 3.noneMatch全部不匹配
if (integerList.stream().noneMatch(i -> i > 3)) {
System.out.println("值都小于3");
}
终端操作
List<Integer> integerList = Arrays.asList(1, 2, 3, 4, 5);
// 统计流中元素个数 通过count/counting
Long result = integerList.stream().count();
// counting 在与collect联合使用的时候特别有用。
Long result = integerList.stream().collect(counting());
// 查找 findFirst查找第一个 ,findFirst方法查找到第一个大于三的元素并打印。
ptional<Integer> result = integerList.stream().filter(i -> i > 3).findFirst();
// findAny随机查找一个
Optional<Integer> result = integerList.stream().filter(i -> i > 3).findAny();
// reduce将流中的元素组合起来
int sum = integerList.stream().reduce(0, (a, b) -> (a + b));
// 还可以简写成
int sum = integerList.stream().reduce(0, Integer::sum);
reduce接受两个参数,一个初始值这里是0,一个BinaryOperator<T> accumulator来将两个元素结合起来产生一个新值,
另外reduce方法还有一个没有初始化值的重载方法。
// 获取流中最小最大值
Optional<Integer> min = menu.stream().map(User::getManey).min(Integer::compareTo);
Optional<Integer> max = menu.stream().map(User::getManey).max(Integer::compareTo);
也可以写成
OptionalInt min = menu.stream().mapToInt(User::getManey).min();
OptionalInt max = menu.stream().mapToInt(User::getManey).max();
// 通过reduce获取最大最小值
Optional<Integer> min = menu.stream().map(User::getManey).reduce(Integer::min);
Optional<Integer> max = menu.stream().map(User::getManey).reduce(Integer::max);
// 求和 通过summingInt
int sum = menu.stream().collect(summingInt(User::getManey));
如果数据类型为double、long,则通过summingDouble、summingLong方法进行求和。
198

被折叠的 条评论
为什么被折叠?



