题目描述
给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列。
数学表达式如下:
如果存在这样的 i, j, k, 且满足 0 ≤ i < j < k ≤ n-1,
使得 arr[i] < arr[j] < arr[k] ,返回 true ; 否则返回 false 。
说明: 要求算法的时间复杂度为 O(n),空间复杂度为 O(1) 。
示例 1:
输入: [1,2,3,4,5]
输出: true
示例 2:
输入: [5,4,3,2,1]
输出: false
题解
class Solution {
public:
bool increasingTriplet(vector<int>& nums) {
int small = INT_MAX,mid=INT_MAX;
for(int i =0;i<nums.size();i++)
{
if(nums[i]<=small) //如果小于small就更新samll,不断使得small取得更小的值,越有可能得到三个连续的增序列
{
small = nums[i];
}
else if(nums[i]<=mid)//如果小于mid就更新mid,尽可能使得mid小
{
mid = nums[i];
}
else if(nums[i]>mid)//找到比mid大的值就说明存在连续3个增序列
return true;
}
return false;
}
};
本文介绍了一个算法问题,即如何在未排序的数组中判断是否存在长度为3的递增子序列。通过使用两个变量small和mid来跟踪遍历过程中的最小值和次小值,该算法能在O(n)的时间复杂度和O(1)的空间复杂度下解决此问题。
406

被折叠的 条评论
为什么被折叠?



