顶会文章分享

Multi-level Cross-view Contrastive Learning for Knowledge-aware Recommender System —— SIGIR 2022

Key words:GNN, Contrastive Learning, Knowledge Graph, Recommender System, Multi-view Graph Learning

导言

自监督学习在GNN推荐中的成功,表明了自监督机制的有效性。本文作者将类似的思想应用到基于知识图谱的推荐中,提出了一个利用对比学习增强的知识图谱推荐模型。

模型框架

在这里插入图片描述

模型分析

模型可以分为三个层次:具体步骤可以写为

  1. user-item graph中用LightGCN学习用户和物品的编码。
  2. 构建item-item graph。利用LightGCN学习items的编码。
  3. 1和2中的item编码进行对比学习。
  4. 在user-item-entity图中根据KGIN的方法编码用户和物品。
  5. 4中得到的用户编码和物品编码与前两步得到的编码分别进行对比学习。cross-view对比学习。
  6. multi-task training

实验结果

Top K:
在这里插入图片描述
CTR:
在这里插入图片描述

总结

新的构建视图的方式。全局,局部视角去考虑构建对比学习。文章中没有涉及到模型复杂度,以及运行时间的相关实验结果。从结构来看,模型结合了三个顶会模型,复杂度挺高。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值