Multi-level Cross-view Contrastive Learning for Knowledge-aware Recommender System —— SIGIR 2022
Key words:GNN, Contrastive Learning, Knowledge Graph, Recommender System, Multi-view Graph Learning
导言
自监督学习在GNN推荐中的成功,表明了自监督机制的有效性。本文作者将类似的思想应用到基于知识图谱的推荐中,提出了一个利用对比学习增强的知识图谱推荐模型。
模型框架

模型分析
模型可以分为三个层次:具体步骤可以写为
- user-item graph中用LightGCN学习用户和物品的编码。
- 构建item-item graph。利用LightGCN学习items的编码。
- 1和2中的item编码进行对比学习。
- 在user-item-entity图中根据KGIN的方法编码用户和物品。
- 4中得到的用户编码和物品编码与前两步得到的编码分别进行对比学习。cross-view对比学习。
- multi-task training
实验结果
Top K:

CTR:

总结
新的构建视图的方式。全局,局部视角去考虑构建对比学习。文章中没有涉及到模型复杂度,以及运行时间的相关实验结果。从结构来看,模型结合了三个顶会模型,复杂度挺高。

4192

被折叠的 条评论
为什么被折叠?



