代号06009
码龄7年
求更新 关注
提问 私信
  • 博客:13,267
    13,267
    总访问量
  • 32
    原创
  • 17
    粉丝
  • 32
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:天津市
加入CSDN时间: 2018-03-22
博客简介:

qq_41882866的博客

查看详细资料
个人成就
  • 获得5次点赞
  • 内容获得6次评论
  • 获得45次收藏
创作历程
  • 1篇
    2022年
  • 2篇
    2021年
  • 29篇
    2020年
成就勋章
TA的专栏
  • 笔记
    19篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    opencv
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

前端面试高频知识点(持续更新版)

前端面试高频知识点(持续更新版)
原创
发布博客 2022.07.11 ·
616 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

paper reading(2)-HOTR: End-to-End Human-Object Interaction Detection with Transformers

注:该文章取自CVPR2021源码:Abstract首先介绍了一下HOI任务:检测人与物体交互关系的任务,包含i)定位交互的主体和客体ii)交互标签的分类大多数现有的方法是通过检测人和对象,分别推断每一对直接的关系,但这种方法是间接地解决问题。本文提出了HOTR框架,基于transformer的encoder-decoder结构直接预测(人,物体,交互)的三元组集合。这种预测集合的方法,有效地利用了内部语义关系,节约了时间成本。1. Introduction先前解决HOI的方法是,先进行对
原创
发布博客 2021.05.12 ·
1285 阅读 ·
0 点赞 ·
1 评论 ·
12 收藏

paper reading(1)-Meta Batch-Instance Normalization for Generalizable Person Re-Identification

注:该文章取自CVPR2021源码:https://github.com/bismex/MetaBINAbstract有监督的person re-id方法已经具有良好性能,但对于不可见的域,泛化能力较弱。许多现有的方法采用instance normalization(实例正则化,消除风格),但instance normalization会丢失关键的判别信息。本文提出的MetaBIN方法main idea:通过元学习的pipeline预先模拟不成功的泛化场景(Under-style-normaliz
原创
发布博客 2021.05.06 ·
841 阅读 ·
1 点赞 ·
4 评论 ·
4 收藏

李飞飞计算机视觉-自用笔记(第八周)

李飞飞计算机视觉-自用笔记(八)15 深度学习高效方法与硬件15 深度学习高效方法与硬件庞大模型的三大挑战:大小、速度、能源效率解决方法:1、算法优化:剪枝(pruning):并非神经网络中的所有参数都是有用的,可以通过连接训练减少连接数量,对于网络精度几乎没有降低,同时还可以降低模型复杂度、预防过拟合等。权值共享(哈弗曼编码、SqueezeNet);量化;低秩分解:一个卷积层可以分解为两个不同卷积核的卷积层;二、三进制网络;WINOGRAD卷积:一种降低卷积计算算法强度的方法,论文参
原创
发布博客 2020.09.04 ·
225 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第十周学习总结

第十周学习总结计算机视觉PyTorch计算机视觉复习了无监督学习的相关概念,了解了了计算机视觉中生成模型的不同方法pixelRNNs 、CNNs、Auto-Encoders和GANS,学习了强化学习的基本方法。PyTorch对MNIST数据集完成了VAE模型的代码实现,学习了GAN的部分基础知识。...
原创
发布博客 2020.08.28 ·
154 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

李飞飞计算机视觉-自用笔记(第七周)

李飞飞计算机视觉-自用笔记(六)13 生成模型13.113 生成模型属于无监督学习的一种,在该任务中,通过给定训练数据的情况下,我们的目标是从相同的数据分布中生成新的样本生成式模型可以解决密度估计的问题,关于估计训练数据的潜在分布的任务,这也是无监督学习的核心问题13.1...
原创
发布博客 2020.08.28 ·
469 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

PyTorch自用笔记(第七周)

十三、自编码器Auto-Encoders13.1 无监督学习
原创
发布博客 2020.08.28 ·
240 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

PyTorch自用笔记(第六周-实战2)

PyTorch自用笔记(第六周)十一、循环神经网络RNN&LSTM11.1 时间序列表示方法11.2 RNN十一、循环神经网络RNN&LSTM11.1 时间序列表示方法[seq_len, feature_len]:[序列长度, 特征长度/维度/表示方法]文本信息:1.one-hot编码:特定的位置编码为1,其余为0缺点:稀疏2.[words, words_vec]Batch:[word num, b, word vec][b, word num, word vec]编
原创
发布博客 2020.08.21 ·
1020 阅读 ·
2 点赞 ·
0 评论 ·
14 收藏

第八周学习总结

第八周学习总结计算机视觉PyTorch计算机视觉学习了计算机视觉中语义分割、目标识别等方向的基本方法;学习了可视化方向的目的和工作,以及各种可视化方法,如部分遮挡、愚弄图像、DeepDream、特征反演、纹理合成、风格迁移等。PyTorch学习了nn.Module模块和数据增强的基本方法,包括翻转、旋转、随机移动和裁剪等;复习了LeNet-5和ResNet,并在CIFAR10数据集下对两个神经网络进行了代码实现。...
原创
发布博客 2020.08.14 ·
150 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

李飞飞计算机视觉-自用笔记(第六周)

李飞飞计算机视觉-自用笔记(六)11 图像分割、定位、检测11.1 语义分割11.2 图像分类+定位11.3 对象识别11 图像分割、定位、检测11.1 语义分割方法1:滑动窗口问题:效率低下方法2:全连接卷积网络问题:计算量太大,耗费内存方法3:卷积与下采样结合上采样:按某规则扩充像素转置卷积:不再是对应元素与卷积核做内积,而是用输入做权重处理卷积核,使输出是带有权重的卷积核的叠加11.2 图像分类+定位通常有两个全连接层,其中一个输出类别及得分,另一个输出坐标及图像的长、宽分别
原创
发布博客 2020.08.14 ·
503 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

PyTorch自用笔记(第五周-实战1)

PyTorch自用笔记(第五周)十、10.1十、10.1
原创
发布博客 2020.08.14 ·
490 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

第七周学习总结

第七周学习总结计算机视觉PyTorch水下识别技术路线遇到的问题计算机视觉了解了循环神经网络的基本结构PyTorch复习了神经网络、全连接层的相关知识,完成了对全连接层的代码实现;学习了一些实战中的技巧,包括交叉验证集的划分、正则化、动量与学习率衰减、dropout等的代码实现;复习了卷积神经网络CNN和经典卷积网络的相关知识。计划在下周对重点网络ResNet进行实战。水下识别技术路线初步了解了URPC比赛的相关内容;了解并复习到了关于图像处理的知识,包括图像降噪、图像分割、目标检测等;关于基于
原创
发布博客 2020.08.07 ·
161 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

李飞飞计算机视觉-自用笔记(第五周)

李飞飞计算机视觉-自用笔记(五)10 循环神经网络10 循环神经网络RNN:Recurrent Neural Network输入与输出存在多种对应关系核心模块:用公式来表示:普通的反向传播在RNN中的计算会很繁琐,所以提出了一种沿时间的截断式反向传播方法:即使输入的序列很长,在训练模型时,前向计算若干步,反向传播得出参数LSTM:Long Short Term Memory长短期记忆网络,可缓解梯度消失和梯度爆炸的问题h(t):隐藏状态c(t):单元状态f遗忘门,决定是否清除单
原创
发布博客 2020.08.07 ·
239 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

PyTorch自用笔记(第四周)

PyTorch自用笔记(第四周)七、神经网络与全连接层7.1 逻辑斯蒂回归7.2交叉熵7.3 多分类问题实战7.4 全连接层七、神经网络与全连接层7.1 逻辑斯蒂回归线性回归回顾:机器学习-吴恩达(第一周)二、模型描述目标:pred = y方法:最小化dist(|pred - y|)逻辑斯蒂回归:机器学习-吴恩达(第二周)六、分类问题目标:benchmark如精确度方法1:最小化dist方法2:最小化divergence7.2交叉熵softmax复习:enlarger the lar
原创
发布博客 2020.08.07 ·
997 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

第六周学习总结

第六周学习总结PyTorch:本周继续学习了基本操作,包括tensor的合并与分割、数学运算、属性统计等;另外复习了随机梯度下降算法,并通过一个demo实现了自动求梯度和反向传播;此外还实现了一个2D函数的模型构建与优化。PyTorch自用笔记(第三周-进阶篇)计算机视觉:本周学习了一些CNN框架,包括LeNet-5、AlexNet、VGGNet、GoogLeNet、ResNet、DenseNet等,了解了主流框架的基本结构和主要特点。李飞飞计算机视觉-自用笔记(第四周)...
原创
发布博客 2020.07.31 ·
188 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

李飞飞计算机视觉-自用笔记(第四周)

李飞飞计算机视觉-自用笔记(四)9 CNN框架9.1 更好地优化9 CNN框架9.1 更好地优化
原创
发布博客 2020.07.31 ·
347 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

PyTorch自用笔记(第三周-进阶篇)

PyTorch进阶五、进阶操作5.1 合并与分割`cat`-合并`stack`-创建新维度`split`-by len`chunk`-by num五、进阶操作5.1 合并与分割cat-合并stack-创建新维度注:原shape必须一样split-by len参数是长度chunk-by num参数是数量...
原创
发布博客 2020.07.31 ·
438 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第五周学习总结

第五周学习总结PyTorch方面,本周学习了一系列PyTorch基础语法和函数,包括张量的创建、初始化;索引、切片以及维度变换等基本操作,对于这些常用的函数在Jupyter上进行了调试与实现本周在计算机视觉方面学习了训练神经网络过程中,一些优化算法,如SGD、AdaGrad、RMSProp、Adam;学习了函数优化完毕后,用模型集成提高模型在测试集上表现的基本思想;复习了一些正则化基本方法;学习了四种不同情况下迁移学习的应用;此外,了解了主流的深度学习框架。计划在下周学习CNN框架和循环神经网络。.
原创
发布博客 2020.07.24 ·
138 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

PyTorch自用笔记(第二周-基础篇)

PyTorch基础一、基本数据类型-张量二、创建Tensor一、基本数据类型-张量Python与PyTorch中基本数据类型的对比string在PyTorch中的表示方式有两种:1.One-hot编码[0, 1, 0, 0, …],但该方式不能体现词与词之间的相关性2.Embedding(略)常用内建数据类型:CPUGPUtorch.FloatTensortorch.cuda.FloatTensortorch.IntTensortorch.cuda.IntTen
原创
发布博客 2020.07.24 ·
750 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

李飞飞计算机视觉-自用笔记(第三周)

7 训练神经网络(下)7.1 更好地优化梯度下降法存在的问题:1.如果损失值在某一个方向下降很快而在其他方向下降很慢,梯度下降过程会成为一个“之”字形,导致其在水平方向前进速度缓慢,这种现象在高维空间普遍出现2.高维问题中,更容易陷入局部最优解,无法跳出;鞍点(saddle point):某些方向损失增加,某些方向损失减小,这个问题也在高维度时尤为突出3.随机性会引入噪声解决方法:SGD+Momentum(带动量的SGD)思想:保持一个不随时间变化的速度,将梯度估计添加到这个速度上,在后在这个
原创
发布博客 2020.07.24 ·
313 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多