深度学习入门笔记v1.0.0

深度学习入门笔记V1.0.0-2021.1.22
版本作者时间备注
V1.0.0Zhe Chen2021.1.22深度学习入门笔记V1

Preface

声明:以下所以安装方法在本人的环境中操作是没有问题的,希望读者反复阅读本文,本文所有的安装软件并不是按照顺序写的,希望读者阅读全文后再自行测试,切勿断章取义,请各取所需。

如在操作过程中遇到问题,请学会百度搜索问题自行解决,以下所有安装方法均是本人百度试出来了,均没有出现问题,所以总结为基本问题大总结。

Computer configuration

可以通过如下命令获取电脑配置信息:

lshw  -short #简略
lshw  #详细

这是我的配置信息:

运行内存处理器显卡系统磁盘硬盘
32GBIntel® Xeon® CPU E5-2678 v3 @ 2.50GHz × 24GeForce RTX 2080 Ti/PCIe/SSE2(11GB*2)512GB4TB+4TB

Ubuntu download typora

极力推荐typora文本编辑工具,方便做学习笔记。

Install

wget -qO - https://typora.io/linux/public-key.asc | sudo apt-key add - # 添加公钥
sudo add-apt-repository 'deb https://typora.io/linux ./' # 添加typora仓库
sudo apt-get update 
sudo apt-get install typora # 安装typora

EXport PDF, HTML, WORD

config pandoc

It can be used to export PDF, HTML, WORD, etc.

sudo apt-get install pandoc

mathpix snipping tool download

It can produce the code of latex about the math formula in your shootscreen by mathpix.

sudo snap install mathpix-snipping-tool

How to open typora

  • Way 1: You can search typora in menu.
  • Way 2: You can input the typora in terminal.

Ubuntu change source

Copy former source

sudo cp /etc/apt/sources.list /etc/apt/sources_init.list

将以前的源备份以下,以防以后可以用的。

Change source

sudo gedit /etc/apt/sources.list

使用gedit打开文档,将下边的阿里源复制进去,然后点击保存关闭。

ALi source

阿里源(Ubuntu 18.04):

deb http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse

deb http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse

deb http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse

deb http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse

deb http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse

Tsing Hua source

清华源:

# 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-updates main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-updates main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-backports main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-backports main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-security main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-security main restricted universe multiverse

# 预发布软件源,不建议启用
# deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-proposed main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-proposed main restricted universe multiverse

Update source

更新源:

sudo apt-get update

修复损坏的软件包,尝试卸载出错的包,重新安装正确版本的。

sudo apt-get -f install

更新软件:

sudo apt-get upgrade

Cmake install and uninstall

Uninstall

卸载已经安装的旧版Cmake:

sudo apt-get autoremove cmake

Install

下载cmake:

sudo wget https://cmake.org/files/v3.12/cmake-3.12.2-Linux-x86_64.tar.gz

解压文件:

sudo tar zxvf cmake-3.12.2-Linux-x86_64.tar.gz

查看解压后目录:

tree -L 2 cmake-3.12.2-Linux-x86_64
cmake-3.12.2-Linux-x86_64
├── bin
│ ├── ccmake
│ ├── cmake
│ ├── cmake-gui
│ ├── cpack
│ └── ctest
├── doc
│ └── cmake
├── man
│ ├── man1
│ └── man7
└── share
├── aclocal
├── applications
├── cmake-3.9
├── icons
└── mime
12 directories, 5 files

创建软链接:

注: 文件路径是可以指定的, 一般选择在/opt 或 /usr 路径下, 这里选择/opt

mv cmake-3.12.2-Linux-x86_64 /opt/cmake-3.12.2
ln -sf /opt/cmake-3.12.2/bin/* /usr/bin/

然后执行命令检查一下:

cmake --version
cmake version 3.12.2

Nvidia driver install

  1. Delete former driver

    sudo apt-get purge nvidia*
    sudo apt --purge remove "cublas*" "cuda*"
    
  2. Add source

    sudo add-apt-repository ppa:graphics-drivers/ppa
    sudo apt update
    
  3. Install

    ubuntu-drivers devices
    #最后根据自己需求安装,这里我安装的是:
    sudo apt-get install --no-install-recommends nvidia-driver-440
    
  4. Reboot and check

    reboot
    nvidia-smi
    
  5. It will be installed successfully if it shows that:

    1. Wed Jan 20 18:58:40 2021       
       +-----------------------------------------------------------------------------+
       | NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
       |-------------------------------+----------------------+----------------------+
       | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
       | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
       |                               |                      |               MIG M. |
       |===============================+======================+======================|
       |   0  GeForce RTX 208...  Off  | 00000000:03:00.0  On |                  N/A |
       | 13%   34C    P8     8W / 257W |    268MiB / 11016MiB |      2%      Default |
       |                               |                      |                  N/A |
       +-------------------------------+----------------------+----------------------+
       |   1  GeForce RTX 208...  Off  | 00000000:04:00.0 Off |                  N/A |
       | 28%   30C    P8     9W / 257W |     10MiB / 11019MiB |      0%      Default |
       |                               |                      |                  N/A |
       +-------------------------------+----------------------+----------------------+
                                                                                      
       +-----------------------------------------------------------------------------+
       | Processes:                                                                  |
       |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
       |        ID   ID                                                   Usage      |
       |=============================================================================|
       |    0   N/A  N/A      1420      G   /usr/lib/xorg/Xorg                 18MiB |
       |    0   N/A  N/A      1505      G   /usr/bin/gnome-shell               72MiB |
       |    0   N/A  N/A      1741      G   /usr/lib/xorg/Xorg                111MiB |
       |    0   N/A  N/A      1875      G   /usr/bin/gnome-shell               35MiB |
       |    0   N/A  N/A      2334      G   /usr/lib/firefox/firefox            2MiB |
       |    0   N/A  N/A      2760      G   /usr/lib/firefox/firefox            2MiB |
       |    0   N/A  N/A      2806      G   /usr/lib/firefox/firefox            2MiB |
       |    0   N/A  N/A      2876      G   /usr/lib/firefox/firefox            2MiB |
       |    0   N/A  N/A      3175      G   /usr/lib/firefox/firefox            2MiB |
       |    0   N/A  N/A      3226      G   /usr/lib/firefox/firefox            2MiB |
       |    0   N/A  N/A      3376      G   /usr/lib/firefox/firefox            2MiB |
       |    0   N/A  N/A      3426      G   /usr/lib/firefox/firefox            2MiB |
       |    1   N/A  N/A      1420      G   /usr/lib/xorg/Xorg                  4MiB |
       |    1   N/A  N/A      1741      G   /usr/lib/xorg/Xorg                  4MiB |
       +-----------------------------------------------------------------------------+\
    

Cuda 10.1 install

Download

  1. 根据自己的系统选择Cuda,这里我选择Cuda10.1,如果下载慢可以直接点击这里下载

  2. 用terminal命令行下载:

    wget http://developer.download.nvidia.com/compute/cuda/10.1/Prod/local_installers/cuda_10.1.243_418.87.00_linux.run
    
  3. 百度网盘链接,提取码:6666 。(有配套的CUDA与CUDNN)

Install

  1. 下载完cuda_10.1.243_418.87.00_linux.run之后sudo sh cuda_10.1.243_418.87.00_linux.run这里默认安装路径于:/usr/local/cuda-10.1

  2. 添加到bashrc让启动terminal可找到,也就是添加环境变量sudo vim ~/.bashrc

  3. 在最后插入如下环境变量

    #added by cuda10.1 installer
    export CUDA_HOME=/usr/local/cuda-10.1
    export PATH=$CUDA_HOME/bin:$PATH
    export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
    
  4. 使用如下命令检查是否生效

    source ~/.bashrc
    nvcc -V
    输出:
    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2019 NVIDIA Corporation
    Built on Fri_Jan__8_19:08:17_CDT_2021
    Cuda compilation tools, release 10.1, V10.1.105
    

Cudcnn7.6

Download

  1. 下载Cudacnn,这里你需要注册才能下载.
  2. 百度网盘链接,提取码:6666 。(有配套的CUDA与CUDNN)

Copy Cudcnn to Cuda

拷贝到Cuda文件夹:

sudo cp cuda/include/cudnn.h /usr/local/cuda/include/ 
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ 
sudo chmod a+r /usr/local/cuda/include/cudnn.h 
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

最后检测是否成功安装和查询安装版本

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

Opencv and opencv-python install

Install

下载opencv3.4.10和对应版本的opencv_contrib,这里一定要下载对应版本,不然很容易遇到错误。可以去opencv官网下载源码。

下载完后,进入opencv文件夹,安装cmake。

sudo apt-get install cmake

安装需要的依赖库:

sudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg.dev libtiff5.dev libswscale-dev libjasper-dev  

创建编译文件夹:

mkdir build

进入文件夹进行配置:

cd build

执行cmake命令:

cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..

执行如下命令,编译过程可能会有点慢,耐心等待哦。 这里也可以使用make -jmake -j4make -j8等命令速度会稍快一些,但如果电脑性能不佳,还是使用make命令较好。-j 后的的数字代表线程。

sudo make -j8

最后,执行命令:

sudo make install

Configure environment

  1. 配置编译环境
    将OpenCV的库添加到路径,这样的目的是可以让系统找到。

    sudo gedit /etc/ld.so.conf.d/opencv.conf 
    

    执行命令后打开的可能是一个空白的文件,直接添加上下面这句代码:

/usr/local/lib
```

执行下列命令使刚才的配置路径生效:

sudo ldconfig  

配置bash:

sudo gedit /etc/bash.bashrc  

把下列这两句代码,添加在文末处:

PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig  
export PKG_CONFIG_PATH  

保存后,执行如下命令使配置生效:

source /etc/bash.bashrc  

执行下列命令更新。至此,ubuntu18.04下opencv已经配置完成:

sudo updatedb  

验证是否配置成功:

pkg-config --libs opencv4

-L/usr/local/opencv4/lib -lopencv_ml -lopencv_dnn -lopencv_video -lopencv_stitching -lopencv_objdetect -lopencv_calib3d -lopencv_features2d -lopencv_highgui -lopencv_videoio -lopencv_imgcodecs -lopencv_flann -lopencv_photo -lopencv_gapi -lopencv_imgproc -lopencv_core

Install opencv-python

现在我们需要在python里面安装opencv库

安装依赖项:

安装libopencv-dev依赖包,运行命令sudo apt install libopencv-dev,在出现的选项中输入y继续执行就行。

运行sudo pip3 install opencv-python命令就行

成功之后,运行python3,进入编译界面,导入库查看版本

python3

import cv2
print(cv2.__version__)

Python3-pip3 install and upgrade

Install

sudo apt-get install python3-pip

Version

pip3 --version
# or use `pip3 -V`

Upgrade

sudo apt-get install --upgrade pip

:用command安装的pip3包往往是最低版本的,所以一定要查看一下你的pip3包的版本,不然后续pip3 install package时,会出现各种问题。

Pip install quickly

可以进入pip .whl文件离线下载官网,各大主流的库都在里面,这样比直接下载快很多。

Pip change source forever

pip换源可以提高下载速度,其实这是拿到电脑后要做的第二件事儿。

  1. 创建 .pip文件:mkdir ~/.pip

  2. 进入文件:cd ~/.pip

  3. 创建pip.conf文件:touch pip.conf

  4. 编辑pip.conf文件:sudo gedit ~/.pip/pip.conf

  5. 打开pip.conf文件窗口,将以下内容复制到文件中:

    [global] 
    index-url = https://pypi.tuna.tsinghua.edu.cn/simple
    [install] 
    trusted-host=pypi.tuna.tsinghua.edu.cn
    

    pip install -i http://mirrors.aliyun.com/pypi/simple 包名 阿里源

    pip install -i https://pypi.mirrors.ustc.edu.cn/simple/ 包名 中科院源

    pip install -i https://pypi.hustunique.com/ 包名 华科源

Pytorch

pytorch离线下载地址,选择对应的cuda版本、python版本、操作系统的.whl文件。

下载完.whl文件后,通过pip3 install name.whl可以快速安装。

Let’s start a project

Darknet object detect

Environment

  • system: Ubuntu 18.04
  • Python: 3.6.9
  • Opencv: 4.5.1
  • CUDA: 10.1
  • GPU: RTX 2080TI

YOLOv4 - AlexeyAB

首先下载代码:

git clone https://github.com/AlexeyAB/darknet.git

由于都是AlexeyAB大神的杰作,在使用上与YOLOv3使用过程几乎相同。

Compile make

如果硬件设备包含GPU加速,需要对makefile文件进行修改。训练肯定需要使用GPU加速,那么得打开项目里面的makefile文件修改一些参数的值,makefile文件前面几行:打开GPU 加速,打开opencv,打开libdarknet.so生成开关。
在这里插入图片描述

另外,还需要修改NVCC=你自己cuda对应的路径,以及CFLAGS和COMMON对应的CUDA路径。
在这里插入图片描述在这里插入图片描述

然后在终端进行编译:

     # cd到darknet文件夹下: 
    make # 或make -j8
Download weights

yolov4.weights: https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights,下载后放在主目录下

Test YOLOv4

使用与训练的权重进行测试,这里我使用了USB摄像头进行cam调试:

./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights -c 0

在这里插入图片描述

以上是使用USB摄像头进行测试实时的目标检测,如果有兴趣可以去AlexeyAB作者github网址寻找webcam进行IP摄像头视频在线实时检测。

Training your dataset----LabelImg

Ps:后续将更新如何训练自己的数据集,以及YOLO系列的算法原理与实现,如何在移动段部署。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Metroplitan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值