进制表示,原码、补码、反码
1、进制表示
1、进制表示
进制以十进制为例:
1234.5 = 1*10^3 + 2*10^2 + 3*10^1 + 4*10^0 + 5*10^-1(按权展开求和)
- 其他进制转十进制都是按权展开求和,比如:
十六进制:0x123 = 1*16^2 + 2*16^1 + 3*16^0
2、进制之间的转换
- 十进制转其他进制:
- 整数部分:基数除法,倒叙取余
- 小数部分:基础乘法,顺序取整
- 十进制转二进制:除了上面的方法,还可以“凑”,如下图:

- 二进制转八进制:二进制从右往左三个三个分组,然后按权展开求和,如下图

- 二进制转十六进制:二进制从右往左四个四个分组,然后按权展开求和,如下图:

- 十进制转八、十六进制:先转二进制再转八或者十六进制
【注】进制之间的转换均是以二进制为中介,这样既方便又容易理解
2、原码、反码、补码
对于一个数,计算机要使用一定的编码方式进行存储,原码、反码、补码是机器存储一个具体数字的编码方式
1、无符号整型数:所有的位数均表示数值:
N位无符号整型数据表示的取值范围为:0 ~ 2^N-1 (2^N表示2的N次方)
2、有符号整型数:最高位0为正数,1为负数
- 正数:原码,反码,补码三者相同(三码合一)
- 负数:其绝对值的二进制,取反,再加1,如下图:

3、根据二进制计算数值,假设数字为1字节:
- 无符号数全部为数值位,按权展开求和。如下图:
1010 1000 --> 1* 2^ 7+ 1*2^5 + 1* 2^ 3 = 168
- 有符号数,先看符号位确定符号,0为正数,1为负数
- 如果为正数,则按权展开求和。
0101 1000 --> 1*2^6 + 1*2^4 + 1*2^3 = 88
- 如果为负数,则先确定符号,然后取反加1计算它的绝对值。,如下图:

【总结】
- 将一个整数转换成二进制,就是其原码;通俗理解,原码就是一个整数本来的二进制形式
- 对于正数,它的反码就是其原码(原码和反码相同);负数的反码是将原码中
除符号位以外的所有位(数值位)取反 - 对于正数,它的补码就是其原码(正数原码、反码、补码都相同);负数的补码就是其反码加1
- 原码、反码、补码的概念只对负数有实际意义,因为对于正数而言,原码啊、反码、补码都是一样的
在计算机内存中,整数一律采用补码的形式来存储。这意味着,当读取整数的时候还要采用逆向的转换,也就是将补码转换为原码
可见,原码、反码、补码的出现,巧妙地将符号位参与运算,并且将减法变成了加法。
3、整型数据类型
char short int long long long
1 2 2/4 4 8
- char:-128~127共256种不同的数字
- unsigned char:0~255
- int:不加说明为4字节
- 注意数据的取值范围
4、浮点类型
float double
4 8
- 小数默认为double
- float:从左向右第一位为符号位,接下来8位位指数位,最后23位为尾数位

- 符号位p:0为正数,1为负
- 指数e:读取的指数 = 实际指数=127
- 尾数m:不包含小数点左边的1
举个简单的栗子:
12.5f -> 1100.1 -> 1.1001*2^3,则存储数据如下:

5、练习
1. 将十进制数转换为二进制:

2.将二进制数转换为八进制:01011010110111110011110111110101

3.将二进制数转换为十六进制:01011010110111110011110111110101

4.将十进制数转换为十六进制:50 100 134


本文详细介绍了不同进制之间的转换方法,包括十进制转二、八、十六进制,以及二进制间的转换。同时阐述了计算机中整数的原码、反码和补码表示,特别强调了负数在计算机存储中的表示方式。此外,还提到了整型数据类型的取值范围。最后,给出了浮点类型的存储结构及其解析。
6753

被折叠的 条评论
为什么被折叠?



