- 博客(67)
- 收藏
- 关注
原创 PGSR : 基于平面的高斯溅射高保真表面重建【全流程分析与测试!】【2025最新版!!】
PGSR论文提出了一种基于平面约束的高斯溅射方法,实现仅从多视角RGB图像进行高质量表面重建。该方法创新性地将3D高斯约束到平面上,结合自适应密化策略和多阶段优化流程,在DTU数据集上取得了0.47的平均Chamfer Distance,训练效率提升17%。相比传统方法,PGSR无需几何先验,重建质量高且计算高效,开源代码便于研究和应用。论文来自浙江大学团队,核心创新包括平面约束机制和智能密化策略,为三维重建领域提供了新思路。
2025-06-07 19:00:00
794
原创 Ubuntu 20.04 下 OpenCV 4.5.4 编译安装与系统默认 OpenCV 4.2 共存切换指南【2025最新版!!!】
本文详细介绍了在Ubuntu 20.04系统中编译安装OpenCV 4.5.4并实现与系统默认4.2.0版本共存的方法。
2025-05-27 11:21:39
1162
原创 科研论文术语全解析:彻底搞懂什么是Baseline、Pipeline..........等内容【2025最新版!!!】
本文系统性解析了科研论文中的常见术语(Pipeline、Baseline、Framework、Module等),阐明其定义、应用场景与写作位置,并给出SLAM与三维重建领域的示例。文章还提供了科研论文结构的写作建议,
2025-05-26 22:44:19
1100
原创 SuperVINS:应对挑战性成像条件的实时视觉-惯性SLAM框架【全流程配置与测试!!!】【2025最新版!!!!】
SuperVINS是一个改进的视觉-惯性SLAM框架,旨在解决传统SLAM系统在挑战性成像条件下的性能下降问题。该项目基于VINS-Fusion框架,通过引入深度学习方法显著提升了系统在光照变化、模糊及快速运动等复杂环境下的鲁棒性。SuperVINS的核心改进包括使用SuperPoint网络进行特征提取、LightGlue网络进行特征匹配,以及采用DBoW3词袋系统进行回环检测。尽管引入了深度学习,项目通过ONNX Runtime等优化手段确保了实时性。
2025-05-21 23:57:51
1555
6
原创 小白也能听懂的干货:视频图像处理工具链中的瑞士军刀------FFmpeg【2025最新版!!!】
在多媒体处理领域,FFmpeg 是一款几乎无所不能的开源命令行工具。无论是视频格式转换、提取音频、视频分帧、添加字幕、图像合成还是转码压缩,FFmpeg 都能胜任。本文将结合大量实用命令示例,系统介绍 FFmpeg 的常见功能、参数含义及其应用场景,帮助你提升学习和工作效率!!
2025-05-19 22:52:33
656
原创 3DGS-to-PC:3DGS模型一键丝滑转 点云 or Mesh 【Ubuntu 20.04】【2025最新版!!】
3DGS-to-PC项目旨在将3D高斯泼溅(3DGS)场景转换为高密度点云,以便在常用3D软件中查看和编辑。该项目还支持生成网格模型,便于进一步处理。环境配置要求包括Ubuntu 20.04、CUDA 11.8、Python 3.x及已安装的3D Gaussian Splatting环境。项目提供了点云和网格生成功能,用户可通过命令行工具进行转换,并支持优化点云质量的高级参数。
2025-05-12 18:52:18
1506
原创 小白也能听懂的干货:三维重建技术:从数字化到现实世界的桥梁【2025最新版!】
三维重建是计算机视觉与图形学中的重要研究领域,它致力于将真实世界的物体或场景通过计算机技术重建为数字三维模型。这项技术在医学成像、城市规划、文化遗产保护、增强现实和虚拟现实等众多领域有着广泛应用。本文将全面介绍三维重建技术的基本原理、主要工作流程、代表性方法、应用场景以及面临的挑战与未来发展趋势。
2025-05-06 12:52:58
1677
原创 小白也能听懂的干货:SLAM建图 vs NeRF / 3DGS三维重建本质区别与应用选择【2025最新版!!!】
一个强调“定位-结构”,服务于机器智能;一个强调“视觉-保真”,服务于人类感知。在实际工程与研究中,它们不是替代关系,而是互补关系。选择哪种技术,关键要看你的目标是“走得更准”,还是“看得更清”。
2025-05-05 23:25:39
860
原创 小白也能听懂的干货:什么是 SLAM?——从原理到应用的技术解析【2025最新版】
SLAM 是一项让设备在“未知环境”中,👉 一边构建地图(Mapping),一边实时估计自己的位置(Localization) 的关键技术。自定位 + 自建图。定位(Localization):估计当前相对于起点的位置和姿态(即6DoF位姿)。建图(Mapping):记录环境中的关键特征点或障碍物,构建稀疏/稠密地图。在 SLAM 中,“定位”是指估计设备自身在空间中的位置与朝向。这个过程叫做“位姿估计”(Pose Estimation)
2025-05-05 23:07:49
1323
原创 小白也能听懂的干货:SLAM与新一代三维重建技术(NeRF/3DGS)的结合与发展【2025最新版!!】
SLAM与NeRF/3DGS的融合代表了计算机视觉和机器人领域的一个重要发展方向。这种融合不仅解决了各自技术的固有局限,也为新一代智能系统提供了更完善的环境感知能力。随着算法创新、计算硬件进步和应用需求演变,我们有理由相信,这一融合将继续深化,并在未来催生更多突破性技术和应用。对于研究人员来说,这是一个充满机遇的领域。通过深入理解两种技术的本质,探索它们的融合点,并关注实际应用需求,研究者有可能在这一前沿领域做出重要贡献。期待未来能看到更多创新成果,推动这一技术融合走向更广阔的应用前景。
2025-05-05 21:08:02
883
原创 DarkGS:论文解读与全流程环境配置及数据集测试【基于Ubuntu20.04 】【2025最新实战无坑版!!】
DarkGS是一个创新性的研究项目,旨在解决机器人在黑暗或低光照环境中探索的问题
2025-05-02 17:21:47
1056
原创 解决 3D Gaussian Splatting 中 SIBR 可视化组件报错 uv_mesh.vert 缺失问题【2025最新版!】
报错 uv_mesh.vert 缺失源于路径问题;推荐在包含 shaders/core/ 的目录中运行程序;也可通过软链接或环境变量方式规避路径问题。
2025-05-02 15:39:33
761
原创 自主采集高质量三维重建数据集指南:面向3DGS与NeRF的图像与视频拍摄技巧【2025最新版!!】
优质的数据是高质量三维重建的前提。3DGS 与 NeRF 对相机轨迹与图像一致性要求极高,而合理的拍摄策略能显著减少训练误差、提升建模精度。通过科学规划拍摄路径、控制移动节奏、保障光照环境,再结合自动化的后处理工具链,即使是普通手机也能采集出媲美专业设备的数据。本文不仅提供了完整的图文指南,帮助你构建高质量、自主可控、易于训练的三维重建数据集,还补充了一键提帧、标注转换与训练指令,覆盖从采集到建模的每一步流程。如果对你有帮助可以一键三连,有问题的小伙伴也欢迎评论区进一步交流!!
2025-04-30 12:45:32
1498
原创 NeRFstudio 训练结果导出与格式转换(点云 AND 网格)全方位流程实战【2025最新版!!!】
NeRFstudio训练完成后,我们可以将NeRF模型导出为多种格式,如视频、点云或网格。以供下游的工具(CloudCompare,Unity等)进行编辑及可视化。
2025-04-29 21:30:00
405
原创 Nerfstudio 环境配置与自有数据集(图片和视频)测试全方位全流程实战【2025最新版!!】
Nerfstudio是由加州大学伯克利分校的研究人员开发的一个模块化NeRF开发框架,旨在提供一个更加用户友好的环境来探索NeRF技术。模块化设计:将NeRF的各个组件模块化,便于理解和定制完整工作流:提供从数据采集、处理到训练、渲染的完整工作流可视化界面:内置基于Web的3D可视化工具,支持实时交互多种算法支持:集成了多种NeRF变体算法,如nerfacto、instant-ngp等社区支持:活跃的开发者社区和详尽的文档。
2025-04-29 16:49:34
1329
原创 NVIDIA GPU 计算能力与 COLMAP 编译配置指南【2025最新版!!!】
通过以上内容,可以根据自己的 GPU 型号和 CUDA 版本选择最合适的编译配置,确保 COLMAP 既能发挥 GPU 的最大性能,又能避免因架构不兼容导致的编译错误。
2025-04-26 15:12:10
674
原创 基于NVIDIA RTX 4090的COLMAP 3.7安装指南:Ubuntu 20.04 + CUDA 11.8环境配置【2025最新版!!】
在使用新一代 GPU 如 RTX 4090 搭配较老版本 CUDA 环境编译 COLMAP 时,架构兼容性问题是一个常见障碍。本文详细解析了问题原因,并提供了多种不同层次的解决方案,从简单的命令行参数到深入修改配置文件。这些方法使用户能够在不升级 CUDA 版本的情况下,充分利用 GPU 加速的 COLMAP 功能,为计算机视觉和三维重建项目提供高效处理能力。
2025-04-26 14:42:05
1367
原创 NeRF:原理 + 实现 + 实践全流程配置+数据集测试【Ubuntu20.04 】【2025最新版】
神经辐射场(Neural Radiance Fields, NeRF)是一种前沿的 3D 场景重建技术,利用深度学习从 2D 图像中建模场景的辐射场,实现高质量的新视角合成。NeRF 在虚拟现实、增强现实、影视特效和游戏开发等领域展现出巨大潜力。
2025-04-24 14:41:25
1087
原创 MIP-Splatting:全流程配置与自制数据集测试【ubuntu20.04】【2025最新版】
Mip-Splatting 是一个计算机视觉研究项目,旨在增强 3D 高斯泼溅(3DGS),解决缩放时(如变焦)出现的伪影问题。它引入了 3D 平滑滤波器和 2D Mip 滤波器,消除高频伪影和扩张/侵蚀伪影,显著改善新型视图合成的质量。该项目在 2024 年 CVPR 大会上获得最佳学生论文奖,表明其在 3D 重建和渲染领域的创新性。
2025-04-15 02:17:01
972
原创 Ubuntu 解压不求人:一篇搞定 Ubuntu 所有主流压缩格式
掌握如何解压不同类型的压缩文件是 Linux 系统中开发者和系统管理员必备的技能之一。无论是 .zip、.tar.gz 还是 .7z、.rar,每种格式都有其使用的场景和优势。通过本文介绍的命令,你可以轻松解压常见的压缩文件,提高处理数据和开发项目的效率。此外,Ubuntu 提供了丰富的工具和包来支持各种格式的压缩与解压,掌握这些基本操作后,你将能够高效地处理各种文件。希望本文能帮助你更好地理解和应用这些工具。
2025-04-04 11:10:47
1058
原创 Git Clone 太慢?开发者的血泪史和终极加速方案【2025最新版!!!】
如果你被 git clone 速度慢 折磨得抓狂,别急,试试以下方法:希望这篇文章能帮你 彻底解决 git clone 速度慢的问题!🚀🚀🚀。
2025-03-14 15:36:37
6918
原创 基于YOLOv11的火灾检测:小白也能听懂的全流程实战讲解【2025最新版!】
在这篇博客中,我将详细介绍如何基于预训练权重,利用公共数据集完成火灾检测的全流程,包括数据集划分、模型训练、验证、推理、可视化,以及超参数调节。同时,我还会展示如何支持图片、视频和外置相机的识别,探讨学术界与工业界的常见方法,并分享一些实用经验
2025-03-05 20:22:08
1564
2
原创 从头开始训练?迁移学习?微调? 一文带你搞清楚深度学习模型训练方法论!!【深度学习炼丹师养成计划】
迁移学习是广义概念,包括特征提取和微调。微调是迁移学习的一种,重点是调整预训练模型权重。
2025-02-28 16:21:16
119
原创 DeepSeek:普通人也能掌握的AI效率神器——来自清华大学的实战指南
DeepSeek不仅仅是一款工具,更是普通人实现效率跃迁的钥匙。通过清华大学的三版资料,我们可以快速掌握这一技术,并将其应用于实际工作和学习中。无论您是职场新人还是资深从业者,DeepSeek都能为您带来意想不到的惊喜。AI不会淘汰人,但会用AI的人会淘汰不用AI的人。它像一把瑞士军刀,能切开职场焦虑、学习卡壳、生活琐事的死结,但关键你得知道往哪儿下刀。普通人要做的不是和AI抢饭碗,而是学会“提问+筛选+微调”,把重复劳动甩给机器,自己专注决策与创造。
2025-02-25 13:47:29
442
原创 在环境冲突情况下调整优先级以解决ROS Catkin构建中缺少模块的问题【ubuntu20.04】
在多Python环境共存的系统中,确保ROS使用系统的Python环境是避免依赖性问题的关键。通过临时调整PATH环境变量,可以快速解决缺少empy模块导致的Catkin构建失败问题。然而,为了长期稳定地开发ROS项目,建议采用独立的终端会话或虚拟环境,确保ROS与其他Python项目的依赖隔离。这不仅提升了开发效率,也减少了潜在的兼容性问题。
2025-01-06 21:47:34
920
原创 Ubuntu 20.04下Kinect2驱动环境配置与测试【稳定无坑版】
Kinect2与Kinect for Windows SDK(官方只支持Windows)不同,在Linux上通常使用社区维护的开源库libfreenect2来驱动和访问Kinect2硬件数据。libfreenect2提供对深度、RGB、红外数据的访问接口,并包含基础的测试程序(Protonect),方便验证安装是否成功。通过上述步骤,我们在Ubuntu 20.04下成功编译和配置了libfreenect2,并利用Protonect测试确认了Kinect2的正常工作。
2024-12-19 17:09:58
1154
原创 下采样在点云处理中的关键作用——以PointNet++为例【初学者无门槛理解版!】
下采样在点云处理,特别是在PointNet++这样的深度学习模型中,扮演着至关重要的角色。通过减少点的数量,降低数据冗余,支持层次化特征提取,扩大感受野,避免过拟合和噪声干扰,下采样不仅提升了模型的计算效率,更增强了其特征表达能力和泛化能力。PointNet++通过引入最远点采样和层次化的网络结构,充分利用下采样机制,实现了对点云数据的多尺度理解和高效处理。通过形象化的解释和具体的例子,我们可以更清晰地理解下采样在点云处理中的重要性。下采样不仅是提升效率的工具,更是实现深层次特征提取和模型性能提升的基础。
2024-12-16 22:40:34
796
原创 深入浅出PointNet++ :层次化学习与点云处理【全面完整版!】
PointNet++ 作为 PointNet 的升级版,通过引入层次化采样、局部特征聚合和多尺度特征融合等创新机制,显著提升了点云数据处理的性能和表达能力。其层次化的结构使得模型能够有效捕捉点云的局部几何信息和全局分布特征,弥补了 PointNet 在处理复杂点云数据方面的不足。PointNet++ 的成功展示了深度学习在处理非结构化数据上的巨大潜力,也为后续研究提供了宝贵的经验和思路如果你对点云数据处理或 PointNet++ 有更深入的兴趣,建议参考原始论文PointNet++
2024-12-11 14:14:51
1768
原创 深入浅出特征的维度与个数【大白话版】
特征向量:在矩阵中,通常是每一行,代表一个样本的所有特征特征维数:每个特征向量的长度,等同于矩阵的列数,表示每个样本有多少个特征特征的个数:传统机器学习:通常与特征维数等同,指每个样本的特征数量(列数)深度学习:有时特指特征通道数。
2024-12-10 18:19:12
1237
原创 升维与降维硬核分析干货【全面无坑版】
升维是指将数据从低维空间映射到高维空间的过程。其主要目的是通过引入新的特征,增强数据的表达能力,使得复杂的模式和关系在高维空间中更加显著,从而提升模型的性能。升维常用于处理非线性可分的数据,使其在高维空间中变得线性可分例子:多项式回归中,特征从原始的线性空间升维到高次多项式空间,允许模型学习到非线性关系升维与降维是计算机视觉中处理高维数据的两种基本而重要的技术手段。升维通过引入新的特征,增强了模型的表达能力,使其能够捕捉到更复杂的模式和关系;
2024-12-09 19:36:25
2352
原创 常见点云文件格式详解及其应用分析【实践无坑版】
pcd:激光雷达点云的主流格式,适合动态点云处理和SLAM。.ply:多传感器融合和高精度三维建模的首选格式。.las:激光雷达测绘的行业标准,广泛应用于地形和城市建模。.xyz:轻量化点云格式,适合快速处理和数据转换。.obj:描述几何和纹理模型的通用格式,用于虚拟现实和三维打印。
2024-11-27 20:05:26
2092
原创 多传感器SLAM建图结果的选择性保存与点云数据格式解析
多传感器SLAM生成的地图数据融合了激光雷达、IMU和相机的优点,最终以点云和轨迹文件的形式呈现。RGB-D 相机生成:稠密点云,包含RGB纹理激光雷达生成:稀疏点云,可能包含强度值激光雷达+相机融合:点云稀疏,叠加纹理信息,可能包含 intensity。
2024-11-27 19:29:52
876
原创 多传感器融合slam过程解析【大白话版】
激光雷达+IMU+相机的SLAM技术通过多传感器融合,实现了环境几何信息、运动估计和颜色纹理的有机结合。生成的地图以激光雷达点云为核心,IMU提供优化,相机叠加纹理,形成彩色点云或轨迹。激光雷达:几何信息(点云地图)IMU:运动轨迹(位姿数据)相机:丰富的纹理和图像信息通过合理使用这些数据,SLAM技术为自动驾驶、机器人导航和三维建模等领域提供了强大的技术支持。未来,随着传感器性能的提升和算法的优化,SLAM技术将在更多复杂场景中展现出更大的潜力。
2024-11-20 09:48:11
3282
原创 Python 模块导入方式详解:从基础到进阶【超清晰大白话版!!】
在 Python 中,模块 是一个包含 Python 定义和语句的文件。模块可以包含函数、类和变量的定义,也可以包含可执行代码。模块的主要目的是代码重用和逻辑分离。标准库模块:Python 自带的功能强大的标准库模块,如 math、os、sys 等。自定义模块:由开发者自己编写的 .py 文件。当我们使用模块时,可以将模块中的代码导入到另一个 Python 文件中使用。这使得我们可以将代码逻辑分离开来,减少重复编写。在 Python 中,导入模块的方式多种多样,每种方式都有其独特的用途和适用场景。
2024-10-24 15:56:07
1414
原创 Python 文件与模块的运行顺序及调用时的执行流程详解【大白话版本!!】
Python 文件的运行顺序是从上到下依次执行的,函数和类的定义会被注册到内存中,但不会立即执行,除非在程序中显式调用。ifname== “main”: 块的作用 是确保文件只有在作为主程序运行时才执行特定的代码,而当它被导入到其他模块时,避免执行这些不必要的代码。模块的导入流程:当一个文件被导入时,Python 会执行其顶层代码,但不会执行 ifname== “main”: 中的代码,这样可以避免意外执行不必要的逻辑。
2024-10-24 15:38:44
1567
原创 如何在Ubuntu上挂载一块硬盘:详解方案与实操步骤【小白无坑版】
挂载一块硬盘在Ubuntu上并不是一项复杂的任务,但在实际操作中需要注意细节,特别是在确保数据安全的前提下,合理设置分区和挂载点。通过本文介绍的详细步骤,你应该能够顺利完成挂载硬盘的操作,同时了解如何通过 fstab 文件实现自动挂载。无论是作为开发项目的数据存储,还是作为扩展硬盘,学会在Linux系统下挂载和管理硬盘是每个Linux用户必备的技能。通过本文的指导,你将掌握这一重要技巧,为未来的工作和项目做好准备。希望这篇文章对你有所帮助!如果你有任何问题或想分享你的经验,欢迎在评论区留言!!!
2024-10-19 17:30:43
3389
1
原创 彻底释放服务器空间:多用户环境下Anaconda共享与优化指南
在多用户的服务器或工作站环境中,合理共享 Anaconda 是避免磁盘空间浪费的重要策略。通过系统级安装,管理员可以集中管理 Anaconda,并允许所有用户共享使用,减少重复安装带来的存储压力。而对于用户级安装,通过适当的权限配置,也可以实现跨用户的共享。在实际应用中,选择最适合的安装方式,并合理配置权限和路径,不仅能够提高系统资源的利用率,还能简化管理工作,提升用户体验。
2024-09-29 21:31:59
1168
原创 解决Ubuntu 20.04下外接显示屏无信号问题【多次尝试无坑完整版!!!】
终于终于解决了这个问题,虽然一开始觉得问题不大,但它确实困扰了我很久。今天终于抽出时间彻底解决了它,现在又可以快乐地使用外接显示屏了!在寻找解决方法的过程中,我发现很多帖子只讲到了更换驱动,但其实后续还需要完成一些配置。相信有不少同学也需要外接显示屏来学习和工作,所以我想记录一下这个过程,希望能给大家提供一些帮助和启发。有什么问题欢迎大家评论区沟通!!!
2024-07-17 17:06:17
4478
原创 ubuntu20.04系统引导修复--->实践测试超简单的稳定解决方案【适用于双系统】
使用Boot-Repair是最简便且有效的对系统引导进行修复的办法之一,可以自动修复GRUB引导问题。它的优点在于操作简便,适合大多数用户,而且操作较为简单,起码是我找了那么多解决办法中最简单的。如果过程中遇到任何问题,欢迎同学们评论区留言!!!
2024-05-19 21:32:18
1841
原创 通俗易懂降维理解------BoW_bayes【大白话版】!!!
当我们将词袋模型和朴素贝叶斯分类结合起来使用时,首先通过词袋模型提取出文本的特征(即文本中词的出现频率),然后使用这些特征让朴素贝叶斯分类器进行学习和预测。这种方法简单、高效,尤其适合于文本数据量大的情况。
2024-04-16 21:27:04
491
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人