分布式微服务中 Pod 分片本地缓存问题
🔥 为什么在分布式微服务里,Pod分片本地缓存会代价大?
问题点 | 原因 | 结果 |
---|---|---|
1. Pod扩容/缩容动态变化 | Pod数量变化导致分片规则失效,之前的数据划分不再合理 | 必须重新分片、重新预热缓存,涉及数据迁移,成本高 |
2. 数据库中的数据变化 | 本地缓存里有旧数据,Pod自己不知道数据库变化 | 要么引入订阅机制(如binlog监听),要么定时同步,非常麻烦 |
3. 数据一致性难保证 | Pod各自持有不同片段,数据更新、失效、同步变复杂 | 需要专门的缓存一致性协议(如广播失效、版本控制等) |
4. 扩容时冷启动问题 | 新Pod刚启动时,本地没有缓存 | 初期大量穿透到数据库,容易引发短时数据库压力暴增(Cold Start问题) |
5. 路由成本增加 | 客户端访问需要先路由找分片所在Pod,失败时还得跳转 | 增加访问延迟,增加系统复杂度 |
🎯 所以总结起来:
在 单体应用 或 少量副本、变化少的集群 里,
本地缓存分片(比如用Caffeine、EHCache)还能凑合用。
但在现代微服务、弹性伸缩(AutoScaling)、高并发、大规模场景下,
依赖Pod分片+本地缓存确实会有:
- 很高的复杂度
- 很难维护的一致性
- 很容易出问题的边缘场景
- 扩缩容代价大
- 灰度发布/滚动更新时容易出错
🚀 那真实生产中,大家怎么做?
在大型分布式微服务系统,业界主流是:
缓存方式 | 说明 | 例子 |
---|---|---|
统一外部缓存 | 把缓存集中放在独立组件,所有Pod统一访问 | Redis集群、Tair(阿里内部版)、Memcached集群 |
本地缓存+外部缓存(二级缓存) | 热数据保存在本地(Caffeine),缓存失效同步外部缓存 | 本地缓存命中率高,外部缓存保证一致性 |
读写通过中间层 | 不让微服务自己处理缓存,统一通过「缓存服务/缓存网关」访问缓存 | 业务服务简单,缓存服务负责一致性和路由 |
👉 这样,就不怕Pod扩容、缩容,不怕数据库变化带来的不一致。
⚡ 用人话总结一下:
Pod本地缓存分片,想法很好听,实现成本极其高,维护风险也极大。
在现代分布式微服务里,越来越多的人选择牺牲一点本地缓存的极致性能,换取系统整体的可靠性和一致性。
业界主流还是:
→ 本地缓存 + Redis/外部缓存(分布式存储)双保险组合。
✨ 最后给你一张思维图(文字版)总结:
分布式微服务缓存选择
├── 需求:极致性能 + 局部缓存
│ └── 本地Caffeine缓存(带短期一致性问题)
│
├── 需求:大规模伸缩 + 数据一致性
│ └── 外部Redis缓存(集中管理)
│
├── 需求:热数据优化
│ └── 本地缓存(Caffeine)+ 外部缓存(Redis)二级缓存策略
│
├── 需求:超大集群、强一致、超高并发
│ └── 自建缓存中间层(如阿里Tair、百度CacheCloud)
🎯 “热数据保存在本地,是分片还是全量复制?”
一般不是分片存,而是:
每个Pod保存自己最近访问过的热点数据副本(即,每个Pod的本地缓存内容不完全一样,但也不是强制分片的)。
🧠 更准确地说:
方式 | 说明 | 特点 |
---|---|---|
分片缓存(Shard Cache) | 每个Pod只负责一部分明确的数据区间(比如UserId 0-9999) | 容易受扩容缩容影响,分片难维护,不太常用 |
热点缓存(Hot Cache) | 每个Pod根据自己实际访问的数据,按需缓存一些热点数据 | 命中率高、伸缩友好,现代微服务最常用 |
全量复制缓存(Full Cache) | 每个Pod缓存全部数据 | 适合小数据量场景(比如字典表),大数据量不可行 |
🔥 所以,在大部分现代微服务里,本地缓存的正确姿势是:
→ 热点数据缓存(Hot Cache,按需加载)
- 每个Pod本地用Caffeine缓存自己服务请求里最热门的key(比如最近查询最多的用户信息、商品信息)。
- 不是强制所有Pod一致。
- 也不是强制分片。
- 失效策略通常用 LRU(最近最少使用淘汰)、TTL(过期时间)。
- 背后挂Redis分布式缓存,兜底查全局一致性数据。
🚀 举个很真实的小例子:
假设你有一个用户系统:
- pod-A,最近很多请求都是 userId = 1234、5678,所以本地缓存这两条。
- pod-B,最近很多请求都是 userId = 9999、8888,所以缓存了另外两条。
它们的本地缓存内容是不一样的,
但只缓存自己流量高的那部分,又快又省内存。
如果本地没有命中(Caffeine失效了),就查Redis;Redis也没有,再查数据库。
✨ 再用一张超简化的流程图总结:
客户端请求 -> 负载均衡到Pod
Pod:
1. 查询本地Caffeine缓存
-> 命中:直接返回!
-> 未命中:
2. 查询Redis
-> 命中:回写本地Caffeine,返回!
-> 未命中:
3. 查询数据库
-> 回写Redis + 回写Caffeine,返回!
🧠 所以最终结论:
你关心的问题 | 真实做法 |
---|---|
是分片吗? | ❌ 不是明确分片! |
是全量吗? | ❌ 不是全量!只缓存热点 |
是按访问情况自动缓存吗? | ✅ 是!热点key自动进入本地缓存 |
📢 总结一句人话版:
现代微服务里的本地缓存,不分片、不全量,只按需缓存最热的数据副本,各Pod根据各自流量自然形成热点分布,后端Redis统一兜底。这样系统既弹性又简单,还特别稳定。✅
🎯 数据一致性问题:
有了
- 数据库(最终真实数据)
- Redis(分布式缓存)
- Caffeine(Pod本地缓存)
三层缓存结构后,
如何在数据修改时保持三层数据一致性?
如果做不好,会出现:
- 脏读(缓存是旧的)
- 缓存穿透(缓存没同步失效)
- 脱节(客户端看到数据不一致)
🚀 标准做法有两大流派:
流派 | 思路 | 说明 |
---|---|---|
1. 先删缓存,后写数据库(Cache Aside模式) | 修改时先删缓存(Redis、本地Caffeine),再写DB | 简单可靠,但有极小概率读写冲突 |
2. 先更新数据库,再更新缓存(Write Through/Write Behind模式) | 修改时同步更新缓存 | 复杂度高,出错风险大,大公司会用 |
✨ 在99%的场景,业界用的都是第1种 —— 先删缓存,再写数据库(Cache Aside)。
简单来说就是:
- 客户端请求修改数据。
- 服务端收到请求:
- 先删除对应的 Redis缓存。
- 同时清理本地 Caffeine缓存。
- 再更新 数据库。
- 下次有人查数据时:
- 本地Caffeine没命中 ➔ 去查Redis
- Redis没命中 ➔ 去查数据库,重新回填到Redis和Caffeine
🧠 为什么是先删缓存,而不是先更新?
因为:
- 如果你先更新数据库,而缓存还在,别人还能读到旧缓存,出现脏读。
- 先删缓存,即使后面更新数据库出问题,总不会读到老缓存了,最多查询慢一点而已。
一致性风险小得多!
📜 详细流程示例:
客户端请求:更新 userId = 1234 的用户信息
微服务执行:
1. 删除本地Caffeine缓存(key=user:1234)
2. 删除Redis缓存(key=user:1234)
3. 更新数据库(user表,id=1234)
4. 返回成功
✅ 整个链路上,所有缓存都干掉了,数据库更新完后,下次有人查时是新数据,重新回填到缓存。
🔥 那如果中间失败了呢?
比如:
- 删Redis成功了
- 但DB更新失败
怎么办?
通常做法是:
- 返回异常,业务感知失败
- 由上层重试
- 保证最终一致性(保证"删了缓存就必须把DB搞定")
(如果是强一致场景,可以用事务补偿、幂等处理)
✨ 针对你的场景(有Caffeine和Redis)小小补充:
在删缓存时,最好先删本地Caffeine,再删Redis。
因为本地缓存通常命中率更高,必须先清理。
正确的顺序是:
1. 删除Caffeine缓存
2. 删除Redis缓存
3. 更新数据库
而不是乱顺序。
🚀 总结成一句超级简洁的话:
在数据库更新时,先删掉本地Caffeine缓存和Redis缓存,再写数据库,下次查询自动回填,保证最终一致性。
🎯 最后给你一张文字版思维导图总结:
数据修改时保持一致性流程:
- 客户端请求数据修改
- 微服务处理:
- 1. 删除本地Caffeine缓存
- 2. 删除Redis缓存
- 3. 更新数据库
- 下次查询:
- 本地缓存没命中
- Redis没命中
- 查数据库,回写Redis、本地Caffeine
删本地缓存、删Redis缓存、更新数据库,这三步能不能放在同一个本地事务里统一提交?
🚀 答案总结:
动作 | 能否纳入同一事务? | 说明 |
---|---|---|
删除本地缓存(Caffeine) | ✅ 可以直接一起做(因为它是本地操作,不需要分布式事务) | |
删除Redis缓存 | ❌ 不能纳入数据库本地事务(DB事务),因为Redis是外部系统 | |
更新数据库 | ✅ 是正常的DB事务内部 |
🔥 详细解释一下为什么:
✅ 本地缓存(Caffeine)
- 纯JVM内存操作。
- 调用Caffeine的
invalidate
方法就是本地同步执行,没问题。 - 可以和你的数据库事务放在同一段代码里顺序执行,没问题。
❌ Redis缓存
- Redis是远程分布式服务,走的是网络TCP请求。
- 你数据库用的是本地事务(比如MySQL事务,InnoDB事务),
- 本地事务只管自己数据库里的操作,它管不了Redis这类远程系统。
- 所以Redis删除不能纳入数据库事务,它俩是跨系统。
如果你强行要把Redis删除也放进事务控制,理论上需要引入「分布式事务协议」比如:
- XA协议
- TCC模式
- SAGA模式
- 本地消息表+异步重试
- RocketMQ事务消息
(这些都是大工程,复杂度爆表⚡)
实际项目中不会这么搞,除非真的要求非常强的一致性,比如金融场景。
🧠 那实际怎么做比较合理?
通常是这样顺序执行(但不绑事务):
- 本地事务开始(DB)
- 删本地Caffeine缓存
- 删Redis缓存(发送删除请求,不抛异常)
- 更新数据库
- 提交数据库事务
✨ 那你肯定想问——
如果删了Redis,结果数据库事务失败了咋办?不就脏了吗?
是的,会出现「缓存提前删,但数据库没更新成功」的问题。
但是:
- 概率极小(因为写数据库失败的概率一般非常低)
- 可以通过失败重试、异步修正、防止脏数据穿透等手段优化
- 极端情况,允许短时间内出现「缓存未命中」回源数据库
所以绝大多数系统接受这种小概率的不一致,以换取系统简洁性和性能。
除非是金融、支付、强一致业务,才用复杂的分布式事务补救。
🎯 用一句人话总结你这个问题:
本地缓存(Caffeine)操作可以直接放进事务,Redis缓存操作没法和数据库事务绑定,只能分开做,大家靠顺序执行和重试机制来尽量保证一致性。🌟
删 Redis 是同步删还是异步删?
删Redis通常是同步删除的。
也就是说:
- 调用Redis的
DEL
命令 - 等Redis服务器响应成功(比如返回
1
表示删除成功,或者0
表示key不存在) - 再继续往下执行,比如更新数据库
不是异步发送,也不是fire-and-forget。
🧠 为什么要同步删?
主要有两个原因:
原因 | 解释 |
---|---|
保证执行顺序正确 | 保证删Redis之后再更新数据库,避免脏数据问题 |
控制异常处理 | 如果删Redis失败了(比如超时、网络异常),可以立刻感知,决定是重试还是直接抛错 |
如果删Redis是异步的,失败了你都不知道,后续就无法保障一致性了。
同步删虽然稍微慢一点(要一次网络请求-响应),但这是可接受的开销,几毫秒左右。
🚀 标准执行流程(同步版)长这样:
客户端发起请求 ➔
微服务处理:
1. 删除本地Caffeine缓存(本地操作)
2. 同步调用Redis删除key(DEL命令,等返回)
- 成功 ➔ 继续
- 失败 ➔ 打日志/重试/返回异常
3. 更新数据库(DB事务)
4. 成功返回客户端
⚡ 如果删Redis失败了怎么办?
常见处理策略:
- 尝试重试1-2次。
- 如果还失败,打警告日志,或者直接返回系统繁忙(拒绝继续更新DB,避免不一致)。
或者在高级一点的系统中:
- 把删除失败的Redis key放到消息队列(比如Kafka、RocketMQ),异步补偿重试。
- 监控Redis错误率,做报警。
总之,删缓存是很重要的一步,不能随便忽略失败!
🔥 总结一句人话版:
删Redis是同步操作,必须确认Redis真正删掉了,才继续执行数据库更新,这样才能最大程度保障最终一致性。
✨ 补充一点高级思考:
- 如果你的微服务请求链路追求极致吞吐量(比如TPS上万),可以考虑用异步删Redis + 幂等性设计,但这需要很复杂的保证机制,一般中小型系统还是直接同步删Redis最简单可靠。
- 高级框架(如Redisson Client)也可以设置操作超时、重试机制。
🎯 本地事务代码
你的所有代码(删本地缓存、删Redis缓存、更新数据库)确实可以写在同一个方法里,
并且这个方法上可以加本地事务(比如 Spring 的@Transactional
注解)。但是:
本地事务(@Transactional
)只能管数据库的提交或回滚,
管不了Redis删的成功或者失败(Redis是外部系统,跟数据库事务无关)。
🧠 分层来看:
动作 | 是否受本地事务控制? | 为什么? |
---|---|---|
删除本地缓存(Caffeine) | ✅ | 本地内存操作,跟事务一起 |
删除Redis缓存 | ❌ | Redis是外部系统,TCP请求,和DB事务无关 |
更新数据库 | ✅ | 真正受DB本地事务控制(Spring事务、JDBC事务) |
所以,虽然代码在同一个方法里顺序执行,
但真正能保证ACID(原子性、一致性、隔离性、持久性)的只有数据库操作。
🚀 代码写法示例(伪代码版):
@Transactional
public void updateUser(User user) {
// 1. 删本地缓存
caffeineCache.invalidate("user:" + user.getId());
// 2. 同步删Redis缓存
try {
redisTemplate.delete("user:" + user.getId());
} catch (Exception e) {
log.warn("Delete redis cache failed", e);
throw new RuntimeException("Redis delete failed, abort update!");
}
// 3. 更新数据库
userMapper.updateById(user);
}
✅ 注意:
- 删除Redis是同步的,等待返回。
- 如果删Redis失败,手动抛异常,这样整个方法回滚(但注意:只回滚数据库!Redis已经删了,没办法回滚)
- 如果删Redis成功,才继续更新数据库,保证顺序正确。
✨ 关键点归纳:
- 代码是在一个方法里,保证执行顺序。
- 事务管理器只管理数据库操作。
- Redis缓存删了就删了,即使后面DB失败了也回不来。
- 异常感知机制很重要:删Redis失败要小心处理。
📢 一句话总结你说的:
代码可以一起写在事务方法里,但数据库受本地事务保护,Redis是外部调用,即使失败了也不会回滚,只能靠你自己提前捕获异常来保证流程正确。
缓存导致的数据不一致性问题
🎯 场景总结:
- 每个Pod有自己的本地Caffeine缓存。
- Redis是集中式的共享缓存。
- 多个Pod可能本地缓存了相同的数据副本(因为热数据访问高频)。
- 数据库中的数据被修改了。
- 按流程:只删了本地自己(当前处理请求的Pod)和Redis的缓存。
- 别的Pod上的本地Caffeine缓存还留着,结果客户端访问了这些脏的本地缓存。
问题出现了:数据脏读。
🚨 这种问题在分布式缓存里有个专门的名字:
缓存一致性问题(Cache Inconsistency)
具体是:本地缓存不一致问题(Local Cache Inconsistency)
而且这种问题一定会出现,无解,只看你是怎么缓解和权衡的。
🚀 那怎么办呢?标准上有几种常见应对方案:
方案 | 思路 | 优点 | 缺点 |
---|---|---|---|
1. 异步通知(广播失效) | 更新时,向所有Pod广播一条「删本地缓存」的消息 | 保证所有Pod同步清掉本地缓存 | 复杂度高,需要消息中间件,存在短暂不一致窗口 |
2. 本地缓存短时过期 | 给本地缓存设置很短的TTL,比如几秒钟 | 自动过期脏数据 | 命中率降低,增加后端压力 |
3. 只用Redis,不用本地缓存 | 不缓存到本地Caffeine了,只靠Redis | 保证一致性 | 本地性能优化没了,增加Redis压力 |
4. 读Redis兜底验证 | 查询本地缓存时,再查一次Redis确认版本号/时间戳 | 提高一致性 | 查询变慢,复杂度上升 |
✨ 最主流、实际中最常用的方法是 方案1+方案2结合:
1. 广播删除(异步通知所有Pod清除对应本地缓存)
- 比如通过:
- Redis发布订阅(Pub/Sub)
- Kafka、RocketMQ消息广播
- 或者用Spring Cloud Bus(基于消息总线)
- 当有数据更新时,不止自己删本地缓存,
- 还发布一条消息
- 所有Pod订阅到这条消息
- 同步清理自己本地的Caffeine缓存
2. 加上短期过期(TTL兜底)
- 本地缓存的数据再设置个很短的存活时间,比如30秒或者1分钟。
- 这样即使广播消息丢失了,也最多过几十秒脏数据就失效了。
双保险:
- 消息同步清理
- TTL自动兜底清理
📚 实际例子
比如某个商品信息更新了,PodA负责修改:
- PodA删自己本地的Caffeine缓存。
- PodA删Redis缓存。
- PodA发一个
商品ID=1234 已更新
的广播消息。 - PodB、PodC、PodD收到广播,主动清理自己本地Caffeine缓存的商品1234。
- 新请求重新加载最新数据。
🔥 那么回到问题,准确回答就是:
- 只清自己本地缓存是不够的,因为其他Pod上也可能有旧副本。
- 需要设计一个"缓存失效同步机制",确保所有Pod一起清理同一条数据。
- 常用的是通过消息总线进行同步清理。
- 另外,给本地缓存加上短TTL,做兜底防止万一广播失败的情况。
🧠 进阶补充一下:
- Redis本身有发布订阅(Pub/Sub)功能,可以拿来做这种广播,但可靠性一般。
- 如果系统要求很高可靠(比如电商秒杀、金融支付),一般用Kafka、RocketMQ这种专业MQ来保证消息投递成功。
🚀 最后一句大白话总结:
在分布式多副本Pod部署下,本地缓存一定会脏,必须通过消息广播机制同步清除,或者靠短期过期TTL兜底。
会不会出现 PodB 和 PodC 还没有来得及同步删除缓存,就已经被读取了?
🎯 答案总结:
是的,会出现这种情况!
因为:广播是异步的,缓存失效的传播存在延迟,所以在广播消息还没到达PodB、PodC之前,
如果有请求刚好打到PodB或PodC,那么还是可能读到脏的本地缓存数据!
🧠 原因分析(帮你细细拆开):
原因 | 解释 |
---|---|
广播是异步的 | 更新数据库后,发布失效消息,PodB、PodC是异步收到、异步处理 |
网络延迟不可避免 | 消息传输在网络中,总要有几毫秒甚至几十毫秒的延迟 |
Pod处理速度不同 | 某些Pod可能CPU忙碌,处理消息的速度慢,导致清除缓存动作滞后 |
并发访问情况复杂 | 恰好有客户端在这段时间访问到了未被清理的本地缓存 |
所以
在这几十毫秒的窗口期内,是有可能被读到脏数据的。
而且这种事情在高并发系统里不是理论存在,而是经常发生。
🚀 那怎么办?主流做法是:
1. 接受短时间脏读风险
- 在很多业务场景(如普通查询)容忍几十ms脏读是可以接受的,比如商品展示、用户资料查询。
- 只要最终能修正(比如下次访问时重新加载),问题不大。
2. 用更重的同步手段(强一致性场景)
- 如果不能接受脏读(比如金融系统、支付金额查询),那需要:
- 更新时设置一个短暂锁(如写锁)
- 或者暂时禁用本地缓存,强制去Redis查一次
- 甚至走双写检测机制(数据版本号校验)
但是这样系统性能就大幅下降了。
一切是性能 vs 一致性之间的权衡。
✨ 直观一点的话来说:
场景 | 做法 |
---|---|
普通场景(能忍脏数据几十ms) | 用异步广播 + 短TTL,简单高效 |
关键场景(如金融支付) | 禁止直接读本地缓存,读Redis或DB确认 |
🧠 再补充一点 —— 缓存失效传播流程分析
更新数据库 ➔
同步删除Redis缓存 ➔
发布广播消息 ➔
各Pod异步收到消息 ➔
各Pod异步清除本地缓存 ➔
整个流程最理想也得5-50ms(甚至更久,视网络延迟、Pod负载而定)
所以,总是存在一小段时间窗口。
系统设计时必须接受并容忍这个事实。
📢 终极一句话总结:
广播同步本地缓存虽然可以尽量快清除脏数据,但在网络传播、Pod处理过程中,仍然存在不可避免的短暂不一致窗口,所以对于强一致性场景,要么加锁,要么兜底读Redis/DB确认。
Pod 到 Pod 之间也需要5-50ms这么久吗?
🎯 回答你:
单纯Pod到Pod之间的物理网络通信延迟,其实非常快,通常在1ms以内!(比如 0.1ms~1ms)
🧠 那为啥我前面提到整个广播同步的延迟可能是5-50ms呢?真正的延迟来源包括:
来源 | 说明 |
---|---|
1. 应用发布消息到消息中间件 | 需要走一次消息发送流程(TCP连接、序列化等) |
2. 消息中间件分发消息 | Redis PubSub、Kafka、RocketMQ等都有内部队列机制,可能排队 |
3. Pod异步监听、消费消息 | Pod内部是异步线程池消费消息的,也可能调度有延迟 |
4. CPU调度、系统负载 | 如果Pod负载高,消息处理线程没那么快被调度 |
5. 网络传输(很小部分) | 真正物理传输时间通常只有0.x ms,但总体不占大头 |
所以:
👉 真正Pod到Pod之间裸传输数据是非常快的,1ms都不到!
👉 真正慢的是在消息系统(Redis、Kafka)发送、排队、消费处理这些环节。
🚀 举个具体数字例子:
比如你的微服务架构是:
- 消息中间件是Redis Pub/Sub
- Pod之间走K8s内部VPC网络
那么:
- 发布一条消息到Redis:~1ms
- Redis把消息推送出去:~1ms
- Pod B异步线程拿到消息,调度执行:~1-5ms(看系统负载)
- 执行
Caffeine.invalidate()
清缓存:<1ms
总计延迟一般在 5ms-10ms 左右是很正常的。
如果系统忙,比如并发非常高(Kafka积压,线程池饱和),才可能到几十ms。
🧠 小结
项目 | 典型耗时 | 备注 |
---|---|---|
单纯Pod到Pod裸网络传输 | 0.1ms-1ms | 几乎可以忽略 |
整个消息广播清缓存过程 | 5-50ms | 主要是发送+消费+处理带来的延迟 |
所以网络本身非常快,
慢的是中间的发送、消息处理流程。
🎯 总结一句话:
单纯Pod到Pod通信非常快(1ms以内),广播缓存失效延迟主要是消息发送、消息消费、Pod负载造成的,所以整体才是5-50ms。
🎯 本地缓存的意义
-
本地缓存(比如 Caffeine)本来就是为了
➔ 避免网络IO、避免Redis压力
➔ 直接内存命中,极快返回,提升吞吐量和响应速度。 -
如果说每次读本地缓存还要兜底去Redis或者DB验证,
➔ 那等于又增加了一次远程IO开销
➔ 本地缓存就失去了它存在的意义(本地缓存是为了快,结果又慢了)。
✅ 所以你的感觉是对的:
兜底读Redis/DB这种做法本质上是在牺牲性能换一致性,
一旦需要频繁兜底,那本地缓存就几乎没价值了。
🧠 那实际工业界是怎么取舍的呢?
大公司和真实生产环境一般这么做:
业务类型 | 设计选择 | 说明 |
---|---|---|
对一致性要求不高的场景(如商品浏览、社交信息) | 保持本地缓存极致性能,允许短时间脏读 | 极大提升吞吐量 |
对一致性要求高的场景(如账户余额、订单金额) | 弃用本地缓存,直接查Redis甚至DB | 保证数据绝对正确 |
极特殊场景(读写分离很强、可以接受一点复杂性) | 本地缓存只存静态数据或只缓存只读热数据 | 比如系统常量配置表 |
✅ 总体原则:
- 能忍受短时间脏数据的,用本地缓存提性能。
- 必须强一致性的,就直接走Redis或者数据库兜底。
绝不会什么场景都兜底Redis/DB,
因为那样的话性能根本就没意义了!
✨ 所以给你的核心金句是:
分布式缓存设计,一定是性能与一致性之间的权衡,而不是追求二者兼得。
在微服务+多Pod这种架构里,
想要极致一致 ➔ 舍弃本地缓存
想要极致性能 ➔ 容忍短暂不一致
没有第三条路。
🚀 你的感受总结成一个表格:
方案 | 一致性 | 性能 | 是否使用本地缓存 |
---|---|---|---|
本地缓存 + 允许短时间脏读 | 低 | 极高 | 是 |
弃用本地缓存 + 强依赖Redis/DB | 高 | 中等 | 否 |
本地缓存 + Redis版本校验兜底 | 中 | 低 | 是(很鸡肋,一般不这么用) |
📢 最后超重要的一句话送给你:
缓存,本质上就是一种“拿一致性换取性能的妥协产物”。
如果想100%一致,那根本就不该用缓存!
🎯 什么是“短暂锁”?
简单来说,短暂锁是一种用于在一定时间内锁住资源的技术手段,防止并发访问。锁住的时间很短,通常是针对缓存更新或缓存失效过程中的数据一致性问题。
🧠 短暂锁的场景:
- 数据更新时,避免多个请求并发读取脏数据:
假设你的某个缓存数据被删除或更新了,在此过程中,如果有多个请求同时到来,这些请求可能同时查询到已经删除或更新的缓存数据,导致返回不一致或错误的结果。 - 如何通过短暂锁来解决:
为了保证数据一致性,我们可以设置一个短暂锁。当一个请求正在更新缓存数据时,它可以加锁,确保其他请求在此时不能访问到这份缓存数据。 - 锁的范围:
锁的范围通常是针对缓存更新或缓存失效的操作,具体来说:- 更新缓存时: 你可以在更新缓存(删除、修改)之前加锁,确保在缓存更新期间,不会有其他请求访问该数据。
- 读取缓存时: 当缓存失效,数据需要重新加载时,锁住缓存,保证只有一个请求能够从数据库加载数据,其他请求则在等待期间被阻塞,避免并发加载数据库。
🚀 如何实现短暂锁?
以下是几种常见的方式:
1. 基于Redis的分布式锁(最常用)
- 原理: 利用Redis的
SETNX
命令(或者RedLock算法)在某个特定的缓存键上加锁。 - 过程:
- 请求A在Redis上为某个缓存键加锁(如果锁定成功,则执行操作)。
- 其他请求(请求B、C等)在Redis上尝试获取锁,但会失败,直到锁被释放。
- 锁在一定时间后自动失效(设置锁的过期时间,以避免死锁)。
- 优点: 可靠,适用于分布式环境,保证了一致性。
- 缺点: 在高并发情况下,可能会有一些性能上的损耗。
2. 基于本地锁(对于单个服务/单Pod)
- 原理: 如果缓存仅用于单个Pod或单实例的微服务,可以在本地内存中使用Java的
ReentrantLock
或synchronized
来加锁。 - 过程:
- 当请求需要更新本地缓存时,加锁(
lock()
)。 - 其他请求尝试获取锁时会被阻塞,直到锁被释放。
- 锁自动在操作完成后释放(
unlock()
)。
- 当请求需要更新本地缓存时,加锁(
- 优点: 简单、低延迟,适用于单实例的场景。
- 缺点: 仅适用于单Pod单实例环境,不能在多Pod的分布式环境中使用。
3. 基于数据库的锁(数据库行级锁)
- 原理: 利用数据库的事务机制,在更新数据时,通过数据库的行级锁(
FOR UPDATE
)来实现锁定,确保在更新数据的过程中没有其他请求修改同一条数据。 - 过程:
- 当请求A对数据进行修改时,它通过数据库的行锁将数据锁定。
- 其他请求不能修改同一条数据,直到锁被释放。
- 优点: 在某些关键业务场景中,可以避免并发修改数据。
- 缺点: 会增加数据库的负担,可能导致性能下降。
🎯 这样为什么能解决脏数据?
- 缓存更新时,锁住缓存:
比如某个缓存更新的过程中,如果没有锁,可能有多个请求同时对缓存进行更新,导致数据不一致或脏数据。加锁后,确保只有一个请求能更新缓存,其他请求只能等待。 - 缓存失效时,锁住重新加载:
假如缓存失效后多个请求同时查询数据时,可以加锁,防止多个请求同时去数据库重新加载数据。只有第一个请求能去查询并加载数据,其他请求只能等待,避免了脏读问题。
🎯 举个例子
假设你有一个商品详情的缓存,商品的库存会随时更新。如果没有加锁,可能出现以下问题:
- 商品库存更新:
- 请求A更新商品库存,清理本地缓存。
- 请求B也在同时查询商品库存,缓存已经过期,但是还没有重新加载数据,返回了脏数据。
- 解决方法:
在请求A更新商品库存时,可以在Redis上加一个锁(比如SETNX
命令),请求B就无法同时查询该商品的库存,只有请求A加载完数据并更新缓存后,请求B才可以读取缓存。
🧠 总结
- 短暂锁的目的是确保在数据更新和缓存失效过程中,避免并发请求读取脏数据。
- 常见的短暂锁实现方式有:
- Redis分布式锁
- 本地锁(适用于单实例Pod)
- 数据库行级锁(适用于数据库更新时的同步)
- 短暂锁可以有效减少脏读问题,但会牺牲一定的性能,因此需要根据业务的具体要求来选择使用。
MyBatis行级锁是自动加上去的吗?
行级锁,在MyBatis中并不是自动加上的,而是需要开发者在SQL语句中显式地添加。默认情况下,MyBatis不会为你自动加行级锁,行级锁是通过SQL语句中的特定关键字来实现的。
在数据库层面,行级锁通常使用FOR UPDATE
来实现,这个关键字可以在查询数据时加锁,确保在事务期间其他事务无法修改这些数据。
如何使用行级锁?
1. 基本的行级锁:
在MySQL、PostgreSQL等数据库中,行级锁通常是通过FOR UPDATE
语句来实现的。这个语句会锁住被查询到的行,直到当前事务提交或回滚为止。
在MyBatis的XML中,你需要显式地使用FOR UPDATE
来添加行级锁。
2. 示例:
假设我们有一个订单表orders
,需要保证只有一个事务能够修改特定订单的状态。
在MyBatis XML中:
<select id="getOrderForUpdate" resultType="Order">
SELECT * FROM orders
WHERE order_id = #{orderId}
FOR UPDATE
</select>
这里的FOR UPDATE
关键字会锁住查询到的订单记录,直到事务提交或者回滚。
FOR UPDATE
锁住的是查询到的行,并且它只会在事务内部有效。- 如果其他事务尝试对相同的记录进行修改,它们会被阻塞,直到当前事务完成。
3. 注意事项:
- 行级锁适用于事务:
FOR UPDATE
通常用于事务内,因此要保证你在使用行级锁时有一个明确的事务范围。如果没有事务,那么锁不会起作用。 - 行级锁阻塞: 在高并发的场景下,行级锁可能导致阻塞。如果很多请求同时尝试对同一条记录加锁,可能会导致性能问题,所以需要谨慎使用。
- 数据库支持: 并非所有数据库都支持
FOR UPDATE
,或者它们的行为可能有所不同。大多数支持ACID特性(如MySQL、PostgreSQL、Oracle等)都支持行级锁。
4. 与MyBatis事务结合使用:
MyBatis中的事务一般是通过Spring或者MyBatis自带的事务管理器来管理的。确保使用行级锁时,事务的提交和回滚是正确的。
例如,使用Spring事务时:
@Service
public class OrderService {
@Transactional
public void updateOrderStatus(int orderId, String newStatus) {
// 查询订单并加行级锁
Order order = orderMapper.getOrderForUpdate(orderId);
// 进行状态更新
order.setStatus(newStatus);
orderMapper.updateOrder(order);
}
}
在这个例子中,getOrderForUpdate
方法会加锁,直到事务提交。
总结:
- MyBatis不会自动为数据库添加行级锁。需要在SQL语句中显式添加
FOR UPDATE
来加锁。 - 行级锁通常用于需要确保同一条数据不会被多个事务并发修改的场景。
- 在使用行级锁时,需要确保事务的一致性,通常结合事务管理器一起使用。
- 使用
FOR UPDATE
时需要考虑可能带来的性能影响,尤其在高并发的环境下。